Ontology type: schema:ScholarlyArticle
2016-09
AUTHORSTomas Azizov, B. Ćurgus, Aad Dijksma
ABSTRACTTheorems due to Stenger (Bull Am Math Soc 74:369–372, 1968) and Nudelman (Int Equ Oper Theory 70:301–305, 2011) in Hilbert spaces and their generalizations to Krein spaces in Azizov and Dijksma (Int Equ Oper Theory 74(2):259–269, 2012) and Azizov et al. (Linear Algebra Appl 439:771–792, 2013) generate additional questions about properties a finite-codimensional compression T0 of a symmetric or self-adjoint linear relation T may or may not inherit from T. These questions concern existence of invariant maximal nonnegative subspaces, definitizability, singular critical points and defect indices. More... »
PAGES71-95
http://scigraph.springernature.com/pub.10.1007/s00020-016-2313-2
DOIhttp://dx.doi.org/10.1007/s00020-016-2313-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1005012526
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Voronezh State University",
"id": "https://www.grid.ac/institutes/grid.20567.36",
"name": [
"Department of Mathematics, Voronezh State University, Universitetskaya pl. 1, 394006, Voronezh, Russia"
],
"type": "Organization"
},
"familyName": "Azizov",
"givenName": "Tomas",
"id": "sg:person.012640546265.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640546265.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Western Washington University",
"id": "https://www.grid.ac/institutes/grid.281386.6",
"name": [
"Department of Mathematics, Western Washington University, 516 High Street, 98225, Bellingham, WA, USA"
],
"type": "Organization"
},
"familyName": "\u0106urgus",
"givenName": "B.",
"id": "sg:person.011677620203.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011677620203.15"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Groningen",
"id": "https://www.grid.ac/institutes/grid.4830.f",
"name": [
"Johann Bernoulli Institute of Mathematics and Computer Science, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands"
],
"type": "Organization"
},
"familyName": "Dijksma",
"givenName": "Aad",
"id": "sg:person.013762723211.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/j.jmaa.2007.07.016",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001589695"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01396668",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006632119",
"https://doi.org/10.1007/bf01396668"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0069840",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006857348",
"https://doi.org/10.1007/bfb0069840"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.laa.2013.04.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007280761"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-65567-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011407145",
"https://doi.org/10.1007/978-3-642-65567-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-65567-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011407145",
"https://doi.org/10.1007/978-3-642-65567-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00020-011-1884-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012886223",
"https://doi.org/10.1007/s00020-011-1884-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-7643-8911-6_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013404647",
"https://doi.org/10.1007/978-3-7643-8911-6_2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-7643-8911-6_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013404647",
"https://doi.org/10.1007/978-3-7643-8911-6_2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00020-012-1991-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022276484",
"https://doi.org/10.1007/s00020-012-1991-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01470908",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024120269",
"https://doi.org/10.1007/bf01470908"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01470908",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024120269",
"https://doi.org/10.1007/bf01470908"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01204699",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029404642",
"https://doi.org/10.1007/bf01204699"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01204699",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029404642",
"https://doi.org/10.1007/bf01204699"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0022-0396(76)90119-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032825241"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0072441",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041863154",
"https://doi.org/10.1007/bfb0072441"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00020-004-1330-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042757694",
"https://doi.org/10.1007/s00020-004-1330-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9904-1968-11957-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043843157"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5186/aasfm.1987.1208",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072648451"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-09",
"datePublishedReg": "2016-09-01",
"description": "Theorems due to Stenger (Bull Am Math Soc 74:369\u2013372, 1968) and Nudelman (Int Equ Oper Theory 70:301\u2013305, 2011) in Hilbert spaces and their generalizations to Krein spaces in Azizov and Dijksma (Int Equ Oper Theory 74(2):259\u2013269, 2012) and Azizov et al. (Linear Algebra Appl 439:771\u2013792, 2013) generate additional questions about properties a finite-codimensional compression T0 of a symmetric or self-adjoint linear relation T may or may not inherit from T. These questions concern existence of invariant maximal nonnegative subspaces, definitizability, singular critical points and defect indices.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00020-016-2313-2",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.6751794",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1136245",
"issn": [
"0378-620X",
"1420-8989"
],
"name": "Integral Equations and Operator Theory",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "86"
}
],
"name": "Finite-Codimensional Compressions of Symmetric and Self-Adjoint Linear Relations in Krein Spaces",
"pagination": "71-95",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"17e290214f85fcec140b908526980f17793930402436dccfb3da8a1600c83d00"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00020-016-2313-2"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1005012526"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00020-016-2313-2",
"https://app.dimensions.ai/details/publication/pub.1005012526"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:26",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87115_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00020-016-2313-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-016-2313-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-016-2313-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-016-2313-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-016-2313-2'
This table displays all metadata directly associated to this object as RDF triples.
138 TRIPLES
21 PREDICATES
42 URIs
19 LITERALS
7 BLANK NODES