Conditional Reducibility of Certain Unbounded Nonnegative Hamiltonian Operator Functions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-06

AUTHORS

T. Ya. Azizov, A. Dijksma, I. V. Gridneva

ABSTRACT

Let J and be operators on a Hilbert space which are both self-adjoint and unitary and satisfy . We consider an operator function on [0, 1] of the form , , where is a closed densely defined Hamiltonian ( -skew-self-adjoint) operator on with and is a function on [0, 1] whose values are bounded operators on and which is continuous in the uniform operator topology. We assume that for each is a closed densely defined nonnegative (=J-accretive) Hamiltonian operator with . In this paper we give sufficient conditions on under which is conditionally reducible, which means that, with respect to a natural decomposition of , is diagonalizable in a 2×2 block operator matrix function such that the spectra of the two operator functions on the diagonal are contained in the right and left open half planes of the complex plane. The sufficient conditions involve bounds on the resolvent of and interpolation of Hilbert spaces. More... »

PAGES

273-303

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00020-012-1964-x

DOI

http://dx.doi.org/10.1007/s00020-012-1964-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022573945


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Voronezh State University", 
          "id": "https://www.grid.ac/institutes/grid.20567.36", 
          "name": [
            "Department of Mathematics, Voronezh State University, Universitetskaya pl. 1, 394006, Voronezh, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Azizov", 
        "givenName": "T. Ya.", 
        "id": "sg:person.012640546265.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640546265.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Johann Bernoulli Institute of Mathematics and Computer Science, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "A.", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Voronezh State Agrocultural University after Emperor Peter I, Michurina street 1, 394087, Voronezh, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gridneva", 
        "givenName": "I. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-0348-8283-5_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003265955", 
          "https://doi.org/10.1007/978-3-0348-8283-5_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8283-5_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003265955", 
          "https://doi.org/10.1007/978-3-0348-8283-5_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012331029364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005022232", 
          "https://doi.org/10.1023/a:1012331029364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65567-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011407145", 
          "https://doi.org/10.1007/978-3-642-65567-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65567-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011407145", 
          "https://doi.org/10.1007/978-3-642-65567-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02923402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012966235", 
          "https://doi.org/10.1007/bf02923402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02923402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012966235", 
          "https://doi.org/10.1007/bf02923402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0099189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022191886", 
          "https://doi.org/10.1007/bfb0099189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01363248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024152317", 
          "https://doi.org/10.1007/bf01363248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01363248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024152317", 
          "https://doi.org/10.1007/bf01363248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01204699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029404642", 
          "https://doi.org/10.1007/bf01204699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01204699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029404642", 
          "https://doi.org/10.1007/bf01204699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1019261625042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035026656", 
          "https://doi.org/10.1023/a:1019261625042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-7643-7698-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045670285", 
          "https://doi.org/10.1007/3-7643-7698-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-7643-7698-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045670285", 
          "https://doi.org/10.1007/3-7643-7698-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02684796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047116771", 
          "https://doi.org/10.1007/bf02684796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(89)90112-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053290676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/mzm600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072368211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-9234-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109706576", 
          "https://doi.org/10.1007/978-3-0348-9234-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-9234-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109706576", 
          "https://doi.org/10.1007/978-3-0348-9234-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-06", 
    "datePublishedReg": "2012-06-01", 
    "description": "Let J and be operators on a Hilbert space which are both self-adjoint and unitary and satisfy . We consider an operator function on [0, 1] of the form , , where is a closed densely defined Hamiltonian ( -skew-self-adjoint) operator on with and is a function on [0, 1] whose values are bounded operators on and which is continuous in the uniform operator topology. We assume that for each is a closed densely defined nonnegative (=J-accretive) Hamiltonian operator with . In this paper we give sufficient conditions on under which is conditionally reducible, which means that, with respect to a natural decomposition of , is diagonalizable in a 2\u00d72 block operator matrix function such that the spectra of the two operator functions on the diagonal are contained in the right and left open half planes of the complex plane. The sufficient conditions involve bounds on the resolvent of and interpolation of Hilbert spaces.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00020-012-1964-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "73"
      }
    ], 
    "name": "Conditional Reducibility of Certain Unbounded Nonnegative Hamiltonian Operator Functions", 
    "pagination": "273-303", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6b8c078cce50d9f5f0827594411f98a04321542216f351a6bb605e77ba1bfe54"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00020-012-1964-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022573945"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00020-012-1964-x", 
      "https://app.dimensions.ai/details/publication/pub.1022573945"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000495.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00020-012-1964-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-012-1964-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-012-1964-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-012-1964-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-012-1964-x'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00020-012-1964-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N20f0df0a6dbd4be1a46f1b4ebe8bc6f3
4 schema:citation sg:pub.10.1007/3-7643-7698-8
5 sg:pub.10.1007/978-3-0348-8283-5_13
6 sg:pub.10.1007/978-3-0348-9234-6
7 sg:pub.10.1007/978-3-642-65567-8
8 sg:pub.10.1007/bf01204699
9 sg:pub.10.1007/bf01363248
10 sg:pub.10.1007/bf02684796
11 sg:pub.10.1007/bf02923402
12 sg:pub.10.1007/bfb0099189
13 sg:pub.10.1023/a:1012331029364
14 sg:pub.10.1023/a:1019261625042
15 https://doi.org/10.1016/0022-0396(89)90112-5
16 https://doi.org/10.4213/mzm600
17 schema:datePublished 2012-06
18 schema:datePublishedReg 2012-06-01
19 schema:description Let J and be operators on a Hilbert space which are both self-adjoint and unitary and satisfy . We consider an operator function on [0, 1] of the form , , where is a closed densely defined Hamiltonian ( -skew-self-adjoint) operator on with and is a function on [0, 1] whose values are bounded operators on and which is continuous in the uniform operator topology. We assume that for each is a closed densely defined nonnegative (=J-accretive) Hamiltonian operator with . In this paper we give sufficient conditions on under which is conditionally reducible, which means that, with respect to a natural decomposition of , is diagonalizable in a 2×2 block operator matrix function such that the spectra of the two operator functions on the diagonal are contained in the right and left open half planes of the complex plane. The sufficient conditions involve bounds on the resolvent of and interpolation of Hilbert spaces.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N4cc09818d3d84fe192c88a8d1dec5790
24 Nbf3ddd0c15d54c9292113d2ba7ad0972
25 sg:journal.1136245
26 schema:name Conditional Reducibility of Certain Unbounded Nonnegative Hamiltonian Operator Functions
27 schema:pagination 273-303
28 schema:productId N0e1b8ffa81c94f46925e77c3388da714
29 N6dd7da011b5a4cc39d53227eb651400f
30 Nd25105d8946743fca25491e40412077f
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022573945
32 https://doi.org/10.1007/s00020-012-1964-x
33 schema:sdDatePublished 2019-04-11T01:03
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nda6abd04ad9242dbbac0431e90d5a999
36 schema:url http://link.springer.com/10.1007/s00020-012-1964-x
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N0e1b8ffa81c94f46925e77c3388da714 schema:name doi
41 schema:value 10.1007/s00020-012-1964-x
42 rdf:type schema:PropertyValue
43 N20f0df0a6dbd4be1a46f1b4ebe8bc6f3 rdf:first sg:person.012640546265.41
44 rdf:rest N56b5bc1cd48a4754a5e8a0be3a2733d5
45 N4cc09818d3d84fe192c88a8d1dec5790 schema:volumeNumber 73
46 rdf:type schema:PublicationVolume
47 N56b5bc1cd48a4754a5e8a0be3a2733d5 rdf:first sg:person.013762723211.39
48 rdf:rest N9206bf027f244720831d3727819fc665
49 N6dd7da011b5a4cc39d53227eb651400f schema:name readcube_id
50 schema:value 6b8c078cce50d9f5f0827594411f98a04321542216f351a6bb605e77ba1bfe54
51 rdf:type schema:PropertyValue
52 N9206bf027f244720831d3727819fc665 rdf:first N96aecef410694b8180db4e60dd46c247
53 rdf:rest rdf:nil
54 N96aecef410694b8180db4e60dd46c247 schema:affiliation Nbf9c2b51a58a47ed8fb587696a8a0c95
55 schema:familyName Gridneva
56 schema:givenName I. V.
57 rdf:type schema:Person
58 Nbf3ddd0c15d54c9292113d2ba7ad0972 schema:issueNumber 2
59 rdf:type schema:PublicationIssue
60 Nbf9c2b51a58a47ed8fb587696a8a0c95 schema:name Voronezh State Agrocultural University after Emperor Peter I, Michurina street 1, 394087, Voronezh, Russia
61 rdf:type schema:Organization
62 Nd25105d8946743fca25491e40412077f schema:name dimensions_id
63 schema:value pub.1022573945
64 rdf:type schema:PropertyValue
65 Nda6abd04ad9242dbbac0431e90d5a999 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
68 schema:name Mathematical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
71 schema:name Pure Mathematics
72 rdf:type schema:DefinedTerm
73 sg:journal.1136245 schema:issn 0378-620X
74 1420-8989
75 schema:name Integral Equations and Operator Theory
76 rdf:type schema:Periodical
77 sg:person.012640546265.41 schema:affiliation https://www.grid.ac/institutes/grid.20567.36
78 schema:familyName Azizov
79 schema:givenName T. Ya.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640546265.41
81 rdf:type schema:Person
82 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
83 schema:familyName Dijksma
84 schema:givenName A.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
86 rdf:type schema:Person
87 sg:pub.10.1007/3-7643-7698-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045670285
88 https://doi.org/10.1007/3-7643-7698-8
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/978-3-0348-8283-5_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003265955
91 https://doi.org/10.1007/978-3-0348-8283-5_13
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/978-3-0348-9234-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109706576
94 https://doi.org/10.1007/978-3-0348-9234-6
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/978-3-642-65567-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011407145
97 https://doi.org/10.1007/978-3-642-65567-8
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01204699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029404642
100 https://doi.org/10.1007/bf01204699
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf01363248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024152317
103 https://doi.org/10.1007/bf01363248
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf02684796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047116771
106 https://doi.org/10.1007/bf02684796
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf02923402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012966235
109 https://doi.org/10.1007/bf02923402
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bfb0099189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022191886
112 https://doi.org/10.1007/bfb0099189
113 rdf:type schema:CreativeWork
114 sg:pub.10.1023/a:1012331029364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005022232
115 https://doi.org/10.1023/a:1012331029364
116 rdf:type schema:CreativeWork
117 sg:pub.10.1023/a:1019261625042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035026656
118 https://doi.org/10.1023/a:1019261625042
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0022-0396(89)90112-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053290676
121 rdf:type schema:CreativeWork
122 https://doi.org/10.4213/mzm600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072368211
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.20567.36 schema:alternateName Voronezh State University
125 schema:name Department of Mathematics, Voronezh State University, Universitetskaya pl. 1, 394006, Voronezh, Russia
126 rdf:type schema:Organization
127 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
128 schema:name Johann Bernoulli Institute of Mathematics and Computer Science, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...