A Generalization of Stenger’s Lemma to Maximal Dissipative Operators View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-07

AUTHORS

M. A. Nudelman

ABSTRACT

It is shown that for any maximal dissipative operator A in some Hilbert space , which is the orthogonal sum of two Hilbert spaces with , the compression of A to is again a maximal dissipative operator in .

PAGES

301-305

References to SciGraph publications

  • 2006. Minimal Models for $$ \mathcal{N}_\kappa ^\infty $$ -functions in OPERATOR THEORY AND INDEFINITE INNER PRODUCT SPACES
  • 1979-03. Passive linear stationary dynamic systems in SIBERIAN MATHEMATICAL JOURNAL
  • Journal

    TITLE

    Integral Equations and Operator Theory

    ISSUE

    3

    VOLUME

    70

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00020-011-1884-1

    DOI

    http://dx.doi.org/10.1007/s00020-011-1884-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012886223


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "name": [
                "Integrated Banking Information Systems, Troitskaya 13, 65125, Odessa, Ukraine"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nudelman", 
            "givenName": "M. A.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00970018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022175732", 
              "https://doi.org/10.1007/bf00970018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-7643-7516-7_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028386729", 
              "https://doi.org/10.1007/3-7643-7516-7_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9904-1968-11957-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043843157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/pjm.1986.125.347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069069157"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-07", 
        "datePublishedReg": "2011-07-01", 
        "description": "It is shown that for any maximal dissipative operator A in some Hilbert space , which is the orthogonal sum of two Hilbert spaces with , the compression of A to is again a maximal dissipative operator in .", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00020-011-1884-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136245", 
            "issn": [
              "0378-620X", 
              "1420-8989"
            ], 
            "name": "Integral Equations and Operator Theory", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "70"
          }
        ], 
        "name": "A Generalization of Stenger\u2019s Lemma to Maximal Dissipative Operators", 
        "pagination": "301-305", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3d63a5c7b1391d060c7cdcade077e667a74f8509a6b403fbaa12053cf25d927d"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00020-011-1884-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012886223"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00020-011-1884-1", 
          "https://app.dimensions.ai/details/publication/pub.1012886223"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000495.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00020-011-1884-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-011-1884-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-011-1884-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-011-1884-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-011-1884-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    65 TRIPLES      20 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00020-011-1884-1 schema:author N24b19841031a4c50a528751a58bc1b56
    2 schema:citation sg:pub.10.1007/3-7643-7516-7_5
    3 sg:pub.10.1007/bf00970018
    4 https://doi.org/10.1090/s0002-9904-1968-11957-3
    5 https://doi.org/10.2140/pjm.1986.125.347
    6 schema:datePublished 2011-07
    7 schema:datePublishedReg 2011-07-01
    8 schema:description It is shown that for any maximal dissipative operator A in some Hilbert space , which is the orthogonal sum of two Hilbert spaces with , the compression of A to is again a maximal dissipative operator in .
    9 schema:genre research_article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N6c9671992ecd40d2a55a46e36f48a446
    13 Nd562c3cba6d643fb93b45fc6532069a0
    14 sg:journal.1136245
    15 schema:name A Generalization of Stenger’s Lemma to Maximal Dissipative Operators
    16 schema:pagination 301-305
    17 schema:productId N4e14934cb83e45849900b8893368dbef
    18 N7a0c52cfb44142cbaf14346d6c720471
    19 Nba37053ca7e742a39bd254d5b380775c
    20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012886223
    21 https://doi.org/10.1007/s00020-011-1884-1
    22 schema:sdDatePublished 2019-04-10T14:57
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher N180af1ece4194fe98434aa4d6cb8209a
    25 schema:url http://link.springer.com/10.1007/s00020-011-1884-1
    26 sgo:license sg:explorer/license/
    27 sgo:sdDataset articles
    28 rdf:type schema:ScholarlyArticle
    29 N180af1ece4194fe98434aa4d6cb8209a schema:name Springer Nature - SN SciGraph project
    30 rdf:type schema:Organization
    31 N24b19841031a4c50a528751a58bc1b56 rdf:first N4c3346056b1b4febb751382b565e480d
    32 rdf:rest rdf:nil
    33 N4c3346056b1b4febb751382b565e480d schema:affiliation Nc6b21ac4b17c4680906f72e42befdc14
    34 schema:familyName Nudelman
    35 schema:givenName M. A.
    36 rdf:type schema:Person
    37 N4e14934cb83e45849900b8893368dbef schema:name dimensions_id
    38 schema:value pub.1012886223
    39 rdf:type schema:PropertyValue
    40 N6c9671992ecd40d2a55a46e36f48a446 schema:issueNumber 3
    41 rdf:type schema:PublicationIssue
    42 N7a0c52cfb44142cbaf14346d6c720471 schema:name readcube_id
    43 schema:value 3d63a5c7b1391d060c7cdcade077e667a74f8509a6b403fbaa12053cf25d927d
    44 rdf:type schema:PropertyValue
    45 Nba37053ca7e742a39bd254d5b380775c schema:name doi
    46 schema:value 10.1007/s00020-011-1884-1
    47 rdf:type schema:PropertyValue
    48 Nc6b21ac4b17c4680906f72e42befdc14 schema:name Integrated Banking Information Systems, Troitskaya 13, 65125, Odessa, Ukraine
    49 rdf:type schema:Organization
    50 Nd562c3cba6d643fb93b45fc6532069a0 schema:volumeNumber 70
    51 rdf:type schema:PublicationVolume
    52 sg:journal.1136245 schema:issn 0378-620X
    53 1420-8989
    54 schema:name Integral Equations and Operator Theory
    55 rdf:type schema:Periodical
    56 sg:pub.10.1007/3-7643-7516-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028386729
    57 https://doi.org/10.1007/3-7643-7516-7_5
    58 rdf:type schema:CreativeWork
    59 sg:pub.10.1007/bf00970018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022175732
    60 https://doi.org/10.1007/bf00970018
    61 rdf:type schema:CreativeWork
    62 https://doi.org/10.1090/s0002-9904-1968-11957-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043843157
    63 rdf:type schema:CreativeWork
    64 https://doi.org/10.2140/pjm.1986.125.347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069069157
    65 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...