A Generalization of Stenger’s Lemma to Maximal Dissipative Operators View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-07

AUTHORS

M. A. Nudelman

ABSTRACT

It is shown that for any maximal dissipative operator A in some Hilbert space , which is the orthogonal sum of two Hilbert spaces with , the compression of A to is again a maximal dissipative operator in .

PAGES

301-305

Journal

TITLE

Integral Equations and Operator Theory

ISSUE

3

VOLUME

70

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00020-011-1884-1

DOI

http://dx.doi.org/10.1007/s00020-011-1884-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012886223


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "name": [
            "Integrated Banking Information Systems, Troitskaya 13, 65125, Odessa, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nudelman", 
        "givenName": "M. A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00970018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022175732", 
          "https://doi.org/10.1007/bf00970018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-7643-7516-7_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028386729", 
          "https://doi.org/10.1007/3-7643-7516-7_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9904-1968-11957-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043843157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1986.125.347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069069157"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-07", 
    "datePublishedReg": "2011-07-01", 
    "description": "It is shown that for any maximal dissipative operator A in some Hilbert space , which is the orthogonal sum of two Hilbert spaces with , the compression of A to is again a maximal dissipative operator in .", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00020-011-1884-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "70"
      }
    ], 
    "name": "A Generalization of Stenger\u2019s Lemma to Maximal Dissipative Operators", 
    "pagination": "301-305", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3d63a5c7b1391d060c7cdcade077e667a74f8509a6b403fbaa12053cf25d927d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00020-011-1884-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012886223"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00020-011-1884-1", 
      "https://app.dimensions.ai/details/publication/pub.1012886223"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000495.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00020-011-1884-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-011-1884-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-011-1884-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-011-1884-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-011-1884-1'


 

This table displays all metadata directly associated to this object as RDF triples.

65 TRIPLES      20 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00020-011-1884-1 schema:author N38ac706d8c8b42d4801e5b22a906d14a
2 schema:citation sg:pub.10.1007/3-7643-7516-7_5
3 sg:pub.10.1007/bf00970018
4 https://doi.org/10.1090/s0002-9904-1968-11957-3
5 https://doi.org/10.2140/pjm.1986.125.347
6 schema:datePublished 2011-07
7 schema:datePublishedReg 2011-07-01
8 schema:description It is shown that for any maximal dissipative operator A in some Hilbert space , which is the orthogonal sum of two Hilbert spaces with , the compression of A to is again a maximal dissipative operator in .
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N67aa6e4e6ccc484ba4151fdadb21dee4
13 N68f30c8570f24f5ab265658167fbcfee
14 sg:journal.1136245
15 schema:name A Generalization of Stenger’s Lemma to Maximal Dissipative Operators
16 schema:pagination 301-305
17 schema:productId N26e21f762166403d9fa50ad69b5b7ca1
18 N40a89fe4cc19459d9a252f7108e73f19
19 N829c503d18fd47f782669cba0b8bf0b7
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012886223
21 https://doi.org/10.1007/s00020-011-1884-1
22 schema:sdDatePublished 2019-04-10T14:57
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N02a5c230b08c44cb823b7fa677204e51
25 schema:url http://link.springer.com/10.1007/s00020-011-1884-1
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N02a5c230b08c44cb823b7fa677204e51 schema:name Springer Nature - SN SciGraph project
30 rdf:type schema:Organization
31 N26e21f762166403d9fa50ad69b5b7ca1 schema:name readcube_id
32 schema:value 3d63a5c7b1391d060c7cdcade077e667a74f8509a6b403fbaa12053cf25d927d
33 rdf:type schema:PropertyValue
34 N2a19ac8043cc4b4ba7b3f651aa58186b schema:name Integrated Banking Information Systems, Troitskaya 13, 65125, Odessa, Ukraine
35 rdf:type schema:Organization
36 N38ac706d8c8b42d4801e5b22a906d14a rdf:first N42b4f0e71bc9455184ad55838bab3f59
37 rdf:rest rdf:nil
38 N40a89fe4cc19459d9a252f7108e73f19 schema:name doi
39 schema:value 10.1007/s00020-011-1884-1
40 rdf:type schema:PropertyValue
41 N42b4f0e71bc9455184ad55838bab3f59 schema:affiliation N2a19ac8043cc4b4ba7b3f651aa58186b
42 schema:familyName Nudelman
43 schema:givenName M. A.
44 rdf:type schema:Person
45 N67aa6e4e6ccc484ba4151fdadb21dee4 schema:volumeNumber 70
46 rdf:type schema:PublicationVolume
47 N68f30c8570f24f5ab265658167fbcfee schema:issueNumber 3
48 rdf:type schema:PublicationIssue
49 N829c503d18fd47f782669cba0b8bf0b7 schema:name dimensions_id
50 schema:value pub.1012886223
51 rdf:type schema:PropertyValue
52 sg:journal.1136245 schema:issn 0378-620X
53 1420-8989
54 schema:name Integral Equations and Operator Theory
55 rdf:type schema:Periodical
56 sg:pub.10.1007/3-7643-7516-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028386729
57 https://doi.org/10.1007/3-7643-7516-7_5
58 rdf:type schema:CreativeWork
59 sg:pub.10.1007/bf00970018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022175732
60 https://doi.org/10.1007/bf00970018
61 rdf:type schema:CreativeWork
62 https://doi.org/10.1090/s0002-9904-1968-11957-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043843157
63 rdf:type schema:CreativeWork
64 https://doi.org/10.2140/pjm.1986.125.347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069069157
65 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...