On Zeros of Certain Analytic Functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-02

AUTHORS

Vladimir Bolotnikov

ABSTRACT

Given a function s which is analytic and bounded by one in modulus in the open unit disk and given a finite Blaschke product of degree k, we relate the number of zeros of the function inside to the number of boundary zeros of special type of the same function.

PAGES

203-215

Journal

TITLE

Integral Equations and Operator Theory

ISSUE

2

VOLUME

69

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00020-010-1826-3

DOI

http://dx.doi.org/10.1007/s00020-010-1826-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021242018


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of William & Mary", 
          "id": "https://www.grid.ac/institutes/grid.264889.9", 
          "name": [
            "Department of Mathematics, The College of William and Mary, 23187-8795, Williamsburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolotnikov", 
        "givenName": "Vladimir", 
        "id": "sg:person.01130533744.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02404416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001883413", 
          "https://doi.org/10.1007/bf02404416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02404416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001883413", 
          "https://doi.org/10.1007/bf02404416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7643-8539-2_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003857959", 
          "https://doi.org/10.1007/978-3-7643-8539-2_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7643-8539-2_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003857959", 
          "https://doi.org/10.1007/978-3-7643-8539-2_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01195006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005189177", 
          "https://doi.org/10.1007/bf01195006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01195006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005189177", 
          "https://doi.org/10.1007/bf01195006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-07-09126-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010915406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01691925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019968975", 
          "https://doi.org/10.1007/bf01691925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01691925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019968975", 
          "https://doi.org/10.1007/bf01691925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01691925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019968975", 
          "https://doi.org/10.1007/bf01691925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01194989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023628084", 
          "https://doi.org/10.1007/bf01194989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01194989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023628084", 
          "https://doi.org/10.1007/bf01194989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8944-5_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023985168", 
          "https://doi.org/10.1007/978-3-0348-8944-5_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19770770116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027367955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.200610809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043442978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.200610809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043442978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/memo/0856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059343905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4099/jjm1924.1.0_83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092308103"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-02", 
    "datePublishedReg": "2011-02-01", 
    "description": "Given a function s which is analytic and bounded by one in modulus in the open unit disk and given a finite Blaschke product of degree k, we relate the number of zeros of the function inside to the number of boundary zeros of special type of the same function.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00020-010-1826-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "name": "On Zeros of Certain Analytic Functions", 
    "pagination": "203-215", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "653537960c19eee4dfb3f8d2eb53cd8195e0ce28484227764fd735b72c65b5ab"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00020-010-1826-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021242018"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00020-010-1826-3", 
      "https://app.dimensions.ai/details/publication/pub.1021242018"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000495.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00020-010-1826-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-010-1826-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-010-1826-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-010-1826-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-010-1826-3'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      20 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00020-010-1826-3 schema:author N1b47d68a8d0d45f28f16c5fa34e7e63e
2 schema:citation sg:pub.10.1007/978-3-0348-8944-5_13
3 sg:pub.10.1007/978-3-7643-8539-2_5
4 sg:pub.10.1007/bf01194989
5 sg:pub.10.1007/bf01195006
6 sg:pub.10.1007/bf01691925
7 sg:pub.10.1007/bf02404416
8 https://doi.org/10.1002/mana.19770770116
9 https://doi.org/10.1002/mana.200610809
10 https://doi.org/10.1090/memo/0856
11 https://doi.org/10.1090/s0002-9939-07-09126-5
12 https://doi.org/10.4099/jjm1924.1.0_83
13 schema:datePublished 2011-02
14 schema:datePublishedReg 2011-02-01
15 schema:description Given a function s which is analytic and bounded by one in modulus in the open unit disk and given a finite Blaschke product of degree k, we relate the number of zeros of the function inside to the number of boundary zeros of special type of the same function.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Naa7cbe7a399e4b91978644b39186df1b
20 Nf48a8a31b3b64d4b9da6247e68c53c10
21 sg:journal.1136245
22 schema:name On Zeros of Certain Analytic Functions
23 schema:pagination 203-215
24 schema:productId Nd087973e021c40699ca958bce167e52f
25 Nf172281ffa384e45b1be1d9faf8fdead
26 Nf597955fccef4305914394f6b220db77
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021242018
28 https://doi.org/10.1007/s00020-010-1826-3
29 schema:sdDatePublished 2019-04-10T14:57
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N5d52348b4abb422dadf22a5d9c7fb832
32 schema:url http://link.springer.com/10.1007/s00020-010-1826-3
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N1b47d68a8d0d45f28f16c5fa34e7e63e rdf:first sg:person.01130533744.43
37 rdf:rest rdf:nil
38 N5d52348b4abb422dadf22a5d9c7fb832 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 Naa7cbe7a399e4b91978644b39186df1b schema:volumeNumber 69
41 rdf:type schema:PublicationVolume
42 Nd087973e021c40699ca958bce167e52f schema:name readcube_id
43 schema:value 653537960c19eee4dfb3f8d2eb53cd8195e0ce28484227764fd735b72c65b5ab
44 rdf:type schema:PropertyValue
45 Nf172281ffa384e45b1be1d9faf8fdead schema:name doi
46 schema:value 10.1007/s00020-010-1826-3
47 rdf:type schema:PropertyValue
48 Nf48a8a31b3b64d4b9da6247e68c53c10 schema:issueNumber 2
49 rdf:type schema:PublicationIssue
50 Nf597955fccef4305914394f6b220db77 schema:name dimensions_id
51 schema:value pub.1021242018
52 rdf:type schema:PropertyValue
53 sg:journal.1136245 schema:issn 0378-620X
54 1420-8989
55 schema:name Integral Equations and Operator Theory
56 rdf:type schema:Periodical
57 sg:person.01130533744.43 schema:affiliation https://www.grid.ac/institutes/grid.264889.9
58 schema:familyName Bolotnikov
59 schema:givenName Vladimir
60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43
61 rdf:type schema:Person
62 sg:pub.10.1007/978-3-0348-8944-5_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023985168
63 https://doi.org/10.1007/978-3-0348-8944-5_13
64 rdf:type schema:CreativeWork
65 sg:pub.10.1007/978-3-7643-8539-2_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003857959
66 https://doi.org/10.1007/978-3-7643-8539-2_5
67 rdf:type schema:CreativeWork
68 sg:pub.10.1007/bf01194989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023628084
69 https://doi.org/10.1007/bf01194989
70 rdf:type schema:CreativeWork
71 sg:pub.10.1007/bf01195006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005189177
72 https://doi.org/10.1007/bf01195006
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bf01691925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019968975
75 https://doi.org/10.1007/bf01691925
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf02404416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001883413
78 https://doi.org/10.1007/bf02404416
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1002/mana.19770770116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027367955
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1002/mana.200610809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043442978
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1090/memo/0856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343905
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1090/s0002-9939-07-09126-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010915406
87 rdf:type schema:CreativeWork
88 https://doi.org/10.4099/jjm1924.1.0_83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092308103
89 rdf:type schema:CreativeWork
90 https://www.grid.ac/institutes/grid.264889.9 schema:alternateName College of William & Mary
91 schema:name Department of Mathematics, The College of William and Mary, 23187-8795, Williamsburg, VA, USA
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...