m-Isometric Commuting Tuples of Operators on a Hilbert Space View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-10

AUTHORS

Jim Gleason, Stefan Richter

ABSTRACT

We consider a generalization of isometric Hilbert space operators to the multivariable setting. We study some of the basic properties of these tuples of commuting operators and we explore several examples. In particular, we show that the d-shift, which is important in the dilation theory of d-contractions (or row contractions), is a d-isometry. As an application of our techniques we prove a theorem about cyclic vectors in certain spaces of analytic functions that are properly contained in the Hardy space of the unit ball of . More... »

PAGES

181-196

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00020-006-1424-6

DOI

http://dx.doi.org/10.1007/s00020-006-1424-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040092179


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Alabama, Tuscaloosa", 
          "id": "https://www.grid.ac/institutes/grid.411015.0", 
          "name": [
            "Department of Mathematics, University of Tennessee, 37996-1300, Knoxville, TN, USA", 
            "Department of Mathematics, University of Alabama, P.O. Box 870350, 35487-0350, Tuscaloosa, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gleason", 
        "givenName": "Jim", 
        "id": "sg:person.012417262266.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012417262266.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Department of Mathematics, University of Tennessee, 37996-1300, Knoxville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Richter", 
        "givenName": "Stefan", 
        "id": "sg:person.010476347326.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476347326.49"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006-10", 
    "datePublishedReg": "2006-10-01", 
    "description": "We consider a generalization of isometric Hilbert space operators to the multivariable setting. We study some of the basic properties of these tuples of commuting operators and we explore several examples. In particular, we show that the d-shift, which is important in the dilation theory of d-contractions (or row contractions), is a d-isometry. As an application of our techniques we prove a theorem about cyclic vectors in certain spaces of analytic functions that are properly contained in the Hardy space of the unit ball of .", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00020-006-1424-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "name": "m-Isometric Commuting Tuples of Operators on a Hilbert Space", 
    "pagination": "181-196", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "befbfe16affa9263d15b23129e9289d5f06e41522c3a1a6596781958af5bf0a9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00020-006-1424-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040092179"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00020-006-1424-6", 
      "https://app.dimensions.ai/details/publication/pub.1040092179"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000496.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00020-006-1424-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-006-1424-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-006-1424-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-006-1424-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-006-1424-6'


 

This table displays all metadata directly associated to this object as RDF triples.

72 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00020-006-1424-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N34844d21d5664536979ba3eeaee33833
4 schema:datePublished 2006-10
5 schema:datePublishedReg 2006-10-01
6 schema:description We consider a generalization of isometric Hilbert space operators to the multivariable setting. We study some of the basic properties of these tuples of commuting operators and we explore several examples. In particular, we show that the d-shift, which is important in the dilation theory of d-contractions (or row contractions), is a d-isometry. As an application of our techniques we prove a theorem about cyclic vectors in certain spaces of analytic functions that are properly contained in the Hardy space of the unit ball of .
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N499f7b0fae9d4ab9b46ff1a4724a4c23
11 Nec560ebf4ec1497db7730c1a90606056
12 sg:journal.1136245
13 schema:name m-Isometric Commuting Tuples of Operators on a Hilbert Space
14 schema:pagination 181-196
15 schema:productId N0ce42a53f5fa42eb96ffb642e53d9352
16 N73a146a35a9140f682f3ab23edaec1c8
17 N9be62fbab1ec4142bff9de7a3bf74073
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040092179
19 https://doi.org/10.1007/s00020-006-1424-6
20 schema:sdDatePublished 2019-04-11T01:56
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N66c7aa02beb74f5593828d4775404712
23 schema:url http://link.springer.com/10.1007/s00020-006-1424-6
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0ce42a53f5fa42eb96ffb642e53d9352 schema:name doi
28 schema:value 10.1007/s00020-006-1424-6
29 rdf:type schema:PropertyValue
30 N34844d21d5664536979ba3eeaee33833 rdf:first sg:person.012417262266.87
31 rdf:rest N517bc6d0d03944f7bde7d804abd1e682
32 N499f7b0fae9d4ab9b46ff1a4724a4c23 schema:issueNumber 2
33 rdf:type schema:PublicationIssue
34 N517bc6d0d03944f7bde7d804abd1e682 rdf:first sg:person.010476347326.49
35 rdf:rest rdf:nil
36 N66c7aa02beb74f5593828d4775404712 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N73a146a35a9140f682f3ab23edaec1c8 schema:name readcube_id
39 schema:value befbfe16affa9263d15b23129e9289d5f06e41522c3a1a6596781958af5bf0a9
40 rdf:type schema:PropertyValue
41 N9be62fbab1ec4142bff9de7a3bf74073 schema:name dimensions_id
42 schema:value pub.1040092179
43 rdf:type schema:PropertyValue
44 Nec560ebf4ec1497db7730c1a90606056 schema:volumeNumber 56
45 rdf:type schema:PublicationVolume
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1136245 schema:issn 0378-620X
53 1420-8989
54 schema:name Integral Equations and Operator Theory
55 rdf:type schema:Periodical
56 sg:person.010476347326.49 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
57 schema:familyName Richter
58 schema:givenName Stefan
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476347326.49
60 rdf:type schema:Person
61 sg:person.012417262266.87 schema:affiliation https://www.grid.ac/institutes/grid.411015.0
62 schema:familyName Gleason
63 schema:givenName Jim
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012417262266.87
65 rdf:type schema:Person
66 https://www.grid.ac/institutes/grid.411015.0 schema:alternateName University of Alabama, Tuscaloosa
67 schema:name Department of Mathematics, University of Alabama, P.O. Box 870350, 35487-0350, Tuscaloosa, AL, USA
68 Department of Mathematics, University of Tennessee, 37996-1300, Knoxville, TN, USA
69 rdf:type schema:Organization
70 https://www.grid.ac/institutes/grid.411461.7 schema:alternateName University of Tennessee at Knoxville
71 schema:name Department of Mathematics, University of Tennessee, 37996-1300, Knoxville, TN, USA
72 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...