m-Isometric Commuting Tuples of Operators on a Hilbert Space View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-10

AUTHORS

Jim Gleason, Stefan Richter

ABSTRACT

We consider a generalization of isometric Hilbert space operators to the multivariable setting. We study some of the basic properties of these tuples of commuting operators and we explore several examples. In particular, we show that the d-shift, which is important in the dilation theory of d-contractions (or row contractions), is a d-isometry. As an application of our techniques we prove a theorem about cyclic vectors in certain spaces of analytic functions that are properly contained in the Hardy space of the unit ball of . More... »

PAGES

181-196

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00020-006-1424-6

DOI

http://dx.doi.org/10.1007/s00020-006-1424-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040092179


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Alabama, Tuscaloosa", 
          "id": "https://www.grid.ac/institutes/grid.411015.0", 
          "name": [
            "Department of Mathematics, University of Tennessee, 37996-1300, Knoxville, TN, USA", 
            "Department of Mathematics, University of Alabama, P.O. Box 870350, 35487-0350, Tuscaloosa, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gleason", 
        "givenName": "Jim", 
        "id": "sg:person.012417262266.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012417262266.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Department of Mathematics, University of Tennessee, 37996-1300, Knoxville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Richter", 
        "givenName": "Stefan", 
        "id": "sg:person.010476347326.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476347326.49"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006-10", 
    "datePublishedReg": "2006-10-01", 
    "description": "We consider a generalization of isometric Hilbert space operators to the multivariable setting. We study some of the basic properties of these tuples of commuting operators and we explore several examples. In particular, we show that the d-shift, which is important in the dilation theory of d-contractions (or row contractions), is a d-isometry. As an application of our techniques we prove a theorem about cyclic vectors in certain spaces of analytic functions that are properly contained in the Hardy space of the unit ball of .", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00020-006-1424-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "name": "m-Isometric Commuting Tuples of Operators on a Hilbert Space", 
    "pagination": "181-196", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "befbfe16affa9263d15b23129e9289d5f06e41522c3a1a6596781958af5bf0a9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00020-006-1424-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040092179"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00020-006-1424-6", 
      "https://app.dimensions.ai/details/publication/pub.1040092179"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000496.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00020-006-1424-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-006-1424-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-006-1424-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-006-1424-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-006-1424-6'


 

This table displays all metadata directly associated to this object as RDF triples.

72 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00020-006-1424-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nac7ab6d36bfd4d7192af8a7724971d88
4 schema:datePublished 2006-10
5 schema:datePublishedReg 2006-10-01
6 schema:description We consider a generalization of isometric Hilbert space operators to the multivariable setting. We study some of the basic properties of these tuples of commuting operators and we explore several examples. In particular, we show that the d-shift, which is important in the dilation theory of d-contractions (or row contractions), is a d-isometry. As an application of our techniques we prove a theorem about cyclic vectors in certain spaces of analytic functions that are properly contained in the Hardy space of the unit ball of .
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N17b086113974442e94c4a2f206ad9367
11 N5b3cae3fcef648c6a4d4266430def4fe
12 sg:journal.1136245
13 schema:name m-Isometric Commuting Tuples of Operators on a Hilbert Space
14 schema:pagination 181-196
15 schema:productId N79af8e30402544d49b08c71f31985a9d
16 N92045ba7ddc4426da75f7d6c7757a8af
17 Na5b1f050d9d249a0bc3de92215bc4851
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040092179
19 https://doi.org/10.1007/s00020-006-1424-6
20 schema:sdDatePublished 2019-04-11T01:56
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nb9d15b5a9abd4fd6bb5c4b01307ec829
23 schema:url http://link.springer.com/10.1007/s00020-006-1424-6
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N17b086113974442e94c4a2f206ad9367 schema:issueNumber 2
28 rdf:type schema:PublicationIssue
29 N5b3cae3fcef648c6a4d4266430def4fe schema:volumeNumber 56
30 rdf:type schema:PublicationVolume
31 N79af8e30402544d49b08c71f31985a9d schema:name doi
32 schema:value 10.1007/s00020-006-1424-6
33 rdf:type schema:PropertyValue
34 N92045ba7ddc4426da75f7d6c7757a8af schema:name dimensions_id
35 schema:value pub.1040092179
36 rdf:type schema:PropertyValue
37 Na5b1f050d9d249a0bc3de92215bc4851 schema:name readcube_id
38 schema:value befbfe16affa9263d15b23129e9289d5f06e41522c3a1a6596781958af5bf0a9
39 rdf:type schema:PropertyValue
40 Nac7ab6d36bfd4d7192af8a7724971d88 rdf:first sg:person.012417262266.87
41 rdf:rest Nc65c62d119ce4ecd82df79dafdd434a4
42 Nb9d15b5a9abd4fd6bb5c4b01307ec829 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 Nc65c62d119ce4ecd82df79dafdd434a4 rdf:first sg:person.010476347326.49
45 rdf:rest rdf:nil
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1136245 schema:issn 0378-620X
53 1420-8989
54 schema:name Integral Equations and Operator Theory
55 rdf:type schema:Periodical
56 sg:person.010476347326.49 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
57 schema:familyName Richter
58 schema:givenName Stefan
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476347326.49
60 rdf:type schema:Person
61 sg:person.012417262266.87 schema:affiliation https://www.grid.ac/institutes/grid.411015.0
62 schema:familyName Gleason
63 schema:givenName Jim
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012417262266.87
65 rdf:type schema:Person
66 https://www.grid.ac/institutes/grid.411015.0 schema:alternateName University of Alabama, Tuscaloosa
67 schema:name Department of Mathematics, University of Alabama, P.O. Box 870350, 35487-0350, Tuscaloosa, AL, USA
68 Department of Mathematics, University of Tennessee, 37996-1300, Knoxville, TN, USA
69 rdf:type schema:Organization
70 https://www.grid.ac/institutes/grid.411461.7 schema:alternateName University of Tennessee at Knoxville
71 schema:name Department of Mathematics, University of Tennessee, 37996-1300, Knoxville, TN, USA
72 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...