High Order Singular Rank One Perturbations of a Positive Operator View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-10

AUTHORS

A. Dijksma, P. Kurasov, Yu. Shondin

ABSTRACT

In this paper self-adjoint realizations in Hilbert and Pontryagin spaces of the formal expression are discussed and compared. Here L is a positive self-adjoint operator in a Hilbert space with inner product 〈·,·〉, α is a real parameter, and φ in the rank one perturbation is a singular element belonging to with n ≥ 3, where is the scale of Hilbert spaces associated with L in More... »

PAGES

209-245

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00020-005-1357-5

DOI

http://dx.doi.org/10.1007/s00020-005-1357-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006073782


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "A.", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lund University", 
          "id": "https://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Department of mathematics, Lund Institute of Technology, P.O. Box 118, 221 00, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurasov", 
        "givenName": "P.", 
        "id": "sg:person.015633624152.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015633624152.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Theoretical Physics, Pedagogical State University, Str. Uly\u2019anova 1, GSP 37, 603950, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shondin", 
        "givenName": "Yu.", 
        "id": "sg:person.07710342371.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07710342371.40"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005-10", 
    "datePublishedReg": "2005-10-01", 
    "description": "In this paper self-adjoint realizations in Hilbert and Pontryagin spaces of the formal expression are discussed and compared. Here L is a positive self-adjoint operator in a Hilbert space with inner product \u3008\u00b7,\u00b7\u3009, \u03b1 is a real parameter, and \u03c6 in the rank one perturbation is a singular element belonging to with n \u2265 3, where is the scale of Hilbert spaces associated with L in", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00020-005-1357-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "name": "High Order Singular Rank One Perturbations of a Positive Operator", 
    "pagination": "209-245", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1ceebd2c896cfa1a8700c3dda72eafd9e5a668b44bce9e0319e4c05fff8935c2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00020-005-1357-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006073782"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00020-005-1357-5", 
      "https://app.dimensions.ai/details/publication/pub.1006073782"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00020-005-1357-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-005-1357-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-005-1357-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-005-1357-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-005-1357-5'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00020-005-1357-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N07c6cf2b3a1f4437a48690e3d37be1a7
4 schema:datePublished 2005-10
5 schema:datePublishedReg 2005-10-01
6 schema:description In this paper self-adjoint realizations in Hilbert and Pontryagin spaces of the formal expression are discussed and compared. Here L is a positive self-adjoint operator in a Hilbert space with inner product 〈·,·〉, α is a real parameter, and φ in the rank one perturbation is a singular element belonging to with n ≥ 3, where is the scale of Hilbert spaces associated with L in
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N264bc90b67744ca497d76011c9954abc
11 N77ce69f026ef4fc6aafaa6c1e688368b
12 sg:journal.1136245
13 schema:name High Order Singular Rank One Perturbations of a Positive Operator
14 schema:pagination 209-245
15 schema:productId N070a6081d89c4600aaed1c18617e2897
16 Nc0cba62faa3b4a2fb982fe152120f046
17 Nd09680d4b7b949088ca4f9ed2f0c233d
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006073782
19 https://doi.org/10.1007/s00020-005-1357-5
20 schema:sdDatePublished 2019-04-10T13:11
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N7aa8fee15437429c8a121417b2b46c98
23 schema:url http://link.springer.com/10.1007/s00020-005-1357-5
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N070a6081d89c4600aaed1c18617e2897 schema:name doi
28 schema:value 10.1007/s00020-005-1357-5
29 rdf:type schema:PropertyValue
30 N07c6cf2b3a1f4437a48690e3d37be1a7 rdf:first sg:person.013762723211.39
31 rdf:rest Nb7d2e7caa9f344eda1da31a6296b59b1
32 N264bc90b67744ca497d76011c9954abc schema:issueNumber 2
33 rdf:type schema:PublicationIssue
34 N3d54b73c40f249d29b8cc19f4b57381e schema:name Department of Theoretical Physics, Pedagogical State University, Str. Uly’anova 1, GSP 37, 603950, Nizhny Novgorod, Russia
35 rdf:type schema:Organization
36 N77ce69f026ef4fc6aafaa6c1e688368b schema:volumeNumber 53
37 rdf:type schema:PublicationVolume
38 N7aa8fee15437429c8a121417b2b46c98 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 Nadff09a7ac2a403b804b1290aecf231f rdf:first sg:person.07710342371.40
41 rdf:rest rdf:nil
42 Nb7d2e7caa9f344eda1da31a6296b59b1 rdf:first sg:person.015633624152.27
43 rdf:rest Nadff09a7ac2a403b804b1290aecf231f
44 Nc0cba62faa3b4a2fb982fe152120f046 schema:name readcube_id
45 schema:value 1ceebd2c896cfa1a8700c3dda72eafd9e5a668b44bce9e0319e4c05fff8935c2
46 rdf:type schema:PropertyValue
47 Nd09680d4b7b949088ca4f9ed2f0c233d schema:name dimensions_id
48 schema:value pub.1006073782
49 rdf:type schema:PropertyValue
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1136245 schema:issn 0378-620X
57 1420-8989
58 schema:name Integral Equations and Operator Theory
59 rdf:type schema:Periodical
60 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
61 schema:familyName Dijksma
62 schema:givenName A.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
64 rdf:type schema:Person
65 sg:person.015633624152.27 schema:affiliation https://www.grid.ac/institutes/grid.4514.4
66 schema:familyName Kurasov
67 schema:givenName P.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015633624152.27
69 rdf:type schema:Person
70 sg:person.07710342371.40 schema:affiliation N3d54b73c40f249d29b8cc19f4b57381e
71 schema:familyName Shondin
72 schema:givenName Yu.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07710342371.40
74 rdf:type schema:Person
75 https://www.grid.ac/institutes/grid.4514.4 schema:alternateName Lund University
76 schema:name Department of mathematics, Lund Institute of Technology, P.O. Box 118, 221 00, Lund, Sweden
77 rdf:type schema:Organization
78 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
79 schema:name Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV, Groningen, The Netherlands
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...