Noiseless Subsystems for Collective Rotation Channels in Quantum Information Theory View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-02

AUTHORS

John A. Holbrook, David W. Kribs, Raymond Laflamme, David Poulin

ABSTRACT

Collective rotation channels are a fundamental class of channels in quantum computing and quantum information theory. The commutant of the noise operators for such a channel is a C*-algebra which is equal to the set of fixed points for the channel. Finding the precise spatial structure of the commutant algebra for a set of noise operators associated with a channel is a core problem in quantum error prevention. We draw on methods of operator algebras, quantum mechanics and combinatorics to explicitly determine the structure of the commutant for the class of collective rotation channels. More... »

PAGES

215-234

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00020-004-1345-1

DOI

http://dx.doi.org/10.1007/s00020-004-1345-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028385804


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Guelph", 
          "id": "https://www.grid.ac/institutes/grid.34429.38", 
          "name": [
            "Department of Mathematics and Statistics, University of Guelph, N1G 2W1, Guelph, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holbrook", 
        "givenName": "John A.", 
        "id": "sg:person.014422537223.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014422537223.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Perimeter Institute", 
          "id": "https://www.grid.ac/institutes/grid.420198.6", 
          "name": [
            "Department of Mathematics and Statistics, University of Guelph, N1G 2W1, Guelph, ON, Canada", 
            "Institute for Quantum Computing, University of Waterloo, N2L 3G1, Waterloo, ON, Canada", 
            "Perimeter Institute for Theoretical Physics, 35 King St. North, N2J 2W9, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kribs", 
        "givenName": "David W.", 
        "id": "sg:person.0575370331.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575370331.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Perimeter Institute", 
          "id": "https://www.grid.ac/institutes/grid.420198.6", 
          "name": [
            "Institute for Quantum Computing, University of Waterloo, N2L 3G1, Waterloo, ON, Canada", 
            "Perimeter Institute for Theoretical Physics, 35 King St. North, N2J 2W9, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laflamme", 
        "givenName": "Raymond", 
        "id": "sg:person.01201156072.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201156072.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Perimeter Institute", 
          "id": "https://www.grid.ac/institutes/grid.420198.6", 
          "name": [
            "Institute for Quantum Computing, University of Waterloo, N2L 3G1, Waterloo, ON, Canada", 
            "Perimeter Institute for Theoretical Physics, 35 King St. North, N2J 2W9, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poulin", 
        "givenName": "David", 
        "id": "sg:person.0603426714.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603426714.26"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005-02", 
    "datePublishedReg": "2005-02-01", 
    "description": "Collective rotation channels are a fundamental class of channels in quantum computing and quantum information theory. The commutant of the noise operators for such a channel is a C*-algebra which is equal to the set of fixed points for the channel. Finding the precise spatial structure of the commutant algebra for a set of noise operators associated with a channel is a core problem in quantum error prevention. We draw on methods of operator algebras, quantum mechanics and combinatorics to explicitly determine the structure of the commutant for the class of collective rotation channels.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00020-004-1345-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "Noiseless Subsystems for Collective Rotation Channels in Quantum Information Theory", 
    "pagination": "215-234", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "87397e8bb0f72115defaaac01a2556fa5db178a5b0a8a1b74097f601ffd3da69"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00020-004-1345-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028385804"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00020-004-1345-1", 
      "https://app.dimensions.ai/details/publication/pub.1028385804"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000495.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00020-004-1345-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-004-1345-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-004-1345-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-004-1345-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-004-1345-1'


 

This table displays all metadata directly associated to this object as RDF triples.

87 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00020-004-1345-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6d002d201524432ea200343c68a9f632
4 schema:datePublished 2005-02
5 schema:datePublishedReg 2005-02-01
6 schema:description Collective rotation channels are a fundamental class of channels in quantum computing and quantum information theory. The commutant of the noise operators for such a channel is a C*-algebra which is equal to the set of fixed points for the channel. Finding the precise spatial structure of the commutant algebra for a set of noise operators associated with a channel is a core problem in quantum error prevention. We draw on methods of operator algebras, quantum mechanics and combinatorics to explicitly determine the structure of the commutant for the class of collective rotation channels.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N41f6fa4ecaf5432da327f15fada3a0ce
11 N94bf1d0833624809bfa513521be6624d
12 sg:journal.1136245
13 schema:name Noiseless Subsystems for Collective Rotation Channels in Quantum Information Theory
14 schema:pagination 215-234
15 schema:productId N11f431fcc25d4202804d90bc72ad7bf9
16 N6f6ab36251454ee9b8e1083400a2d08d
17 N92bf6ca77d0742fbbdb52d8a112662dd
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028385804
19 https://doi.org/10.1007/s00020-004-1345-1
20 schema:sdDatePublished 2019-04-11T00:12
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N988dbad055ec42cdb1fe54f9a91c4d8c
23 schema:url http://link.springer.com/10.1007/s00020-004-1345-1
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N07855f2bf09a42709e0a3253cf23edc2 rdf:first sg:person.01201156072.19
28 rdf:rest Ncad1eb1bcc7541d78c937a05f3918a4e
29 N11f431fcc25d4202804d90bc72ad7bf9 schema:name dimensions_id
30 schema:value pub.1028385804
31 rdf:type schema:PropertyValue
32 N41f6fa4ecaf5432da327f15fada3a0ce schema:issueNumber 2
33 rdf:type schema:PublicationIssue
34 N5fc009ad1f8e43daae4da3a101da7cb1 rdf:first sg:person.0575370331.14
35 rdf:rest N07855f2bf09a42709e0a3253cf23edc2
36 N6d002d201524432ea200343c68a9f632 rdf:first sg:person.014422537223.27
37 rdf:rest N5fc009ad1f8e43daae4da3a101da7cb1
38 N6f6ab36251454ee9b8e1083400a2d08d schema:name doi
39 schema:value 10.1007/s00020-004-1345-1
40 rdf:type schema:PropertyValue
41 N92bf6ca77d0742fbbdb52d8a112662dd schema:name readcube_id
42 schema:value 87397e8bb0f72115defaaac01a2556fa5db178a5b0a8a1b74097f601ffd3da69
43 rdf:type schema:PropertyValue
44 N94bf1d0833624809bfa513521be6624d schema:volumeNumber 51
45 rdf:type schema:PublicationVolume
46 N988dbad055ec42cdb1fe54f9a91c4d8c schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Ncad1eb1bcc7541d78c937a05f3918a4e rdf:first sg:person.0603426714.26
49 rdf:rest rdf:nil
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1136245 schema:issn 0378-620X
57 1420-8989
58 schema:name Integral Equations and Operator Theory
59 rdf:type schema:Periodical
60 sg:person.01201156072.19 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
61 schema:familyName Laflamme
62 schema:givenName Raymond
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201156072.19
64 rdf:type schema:Person
65 sg:person.014422537223.27 schema:affiliation https://www.grid.ac/institutes/grid.34429.38
66 schema:familyName Holbrook
67 schema:givenName John A.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014422537223.27
69 rdf:type schema:Person
70 sg:person.0575370331.14 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
71 schema:familyName Kribs
72 schema:givenName David W.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575370331.14
74 rdf:type schema:Person
75 sg:person.0603426714.26 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
76 schema:familyName Poulin
77 schema:givenName David
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603426714.26
79 rdf:type schema:Person
80 https://www.grid.ac/institutes/grid.34429.38 schema:alternateName University of Guelph
81 schema:name Department of Mathematics and Statistics, University of Guelph, N1G 2W1, Guelph, ON, Canada
82 rdf:type schema:Organization
83 https://www.grid.ac/institutes/grid.420198.6 schema:alternateName Perimeter Institute
84 schema:name Department of Mathematics and Statistics, University of Guelph, N1G 2W1, Guelph, ON, Canada
85 Institute for Quantum Computing, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
86 Perimeter Institute for Theoretical Physics, 35 King St. North, N2J 2W9, Waterloo, ON, Canada
87 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...