On the Carathéodory–Fejér Interpolation Problem for Generalized Schur Functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-09

AUTHORS

Vladimir Bolotnikov

ABSTRACT

The solutions of the Carathéodory–Fejér interpolation problem for generalized Schur functions can be parametrized via a linear fractional transformation over the class of classical Schur functions. The linear fractional transformation of some of these functions may have a pole (simple or multiple) in one or more of the interpolation points or not satisfy one or more interpolation conditions, hence not all Schur functions can serve as a parameter. The set of excluded parameters is characterized in terms of the related Pick matrix. More... »

PAGES

9-41

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00020-003-1220-5

DOI

http://dx.doi.org/10.1007/s00020-003-1220-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003813268


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of William & Mary", 
          "id": "https://www.grid.ac/institutes/grid.264889.9", 
          "name": [
            "Department of Mathematics, The College of William and Mary, 23187-8795, Williamsburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolotnikov", 
        "givenName": "Vladimir", 
        "id": "sg:person.01130533744.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004-09", 
    "datePublishedReg": "2004-09-01", 
    "description": "The solutions of the Carath\u00e9odory\u2013Fej\u00e9r interpolation problem for generalized Schur functions can be parametrized via a linear fractional transformation over the class of classical Schur functions. The linear fractional transformation of some of these functions may have a pole (simple or multiple) in one or more of the interpolation points or not satisfy one or more interpolation conditions, hence not all Schur functions can serve as a parameter. The set of excluded parameters is characterized in terms of the related Pick matrix.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00020-003-1220-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "name": "On the Carath\u00e9odory\u2013Fej\u00e9r Interpolation Problem for Generalized Schur Functions", 
    "pagination": "9-41", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "122ab73022b55976c51006697618a96600810a3c11b4a18918b5f242b83510ea"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00020-003-1220-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003813268"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00020-003-1220-5", 
      "https://app.dimensions.ai/details/publication/pub.1003813268"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00020-003-1220-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-003-1220-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-003-1220-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-003-1220-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-003-1220-5'


 

This table displays all metadata directly associated to this object as RDF triples.

61 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00020-003-1220-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N93eff228e6b7410eb462c79427140cd7
4 schema:datePublished 2004-09
5 schema:datePublishedReg 2004-09-01
6 schema:description The solutions of the Carathéodory–Fejér interpolation problem for generalized Schur functions can be parametrized via a linear fractional transformation over the class of classical Schur functions. The linear fractional transformation of some of these functions may have a pole (simple or multiple) in one or more of the interpolation points or not satisfy one or more interpolation conditions, hence not all Schur functions can serve as a parameter. The set of excluded parameters is characterized in terms of the related Pick matrix.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N180d822f53ca4623ad8b5bb9e429cfc4
11 Nd54aaf1ac6dc4ed4b86e3ee2cf846bf8
12 sg:journal.1136245
13 schema:name On the Carathéodory–Fejér Interpolation Problem for Generalized Schur Functions
14 schema:pagination 9-41
15 schema:productId N6a52ebb1b6ba401ba3dc7c854c31ab76
16 Ncf4e79d965fc47cdab365308d1955379
17 Nf11a2b6a23594f28a20ad0386d3e7f14
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003813268
19 https://doi.org/10.1007/s00020-003-1220-5
20 schema:sdDatePublished 2019-04-10T14:05
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nb7c7a16ad1ec4dde96615b857054a906
23 schema:url http://link.springer.com/10.1007/s00020-003-1220-5
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N180d822f53ca4623ad8b5bb9e429cfc4 schema:issueNumber 1
28 rdf:type schema:PublicationIssue
29 N6a52ebb1b6ba401ba3dc7c854c31ab76 schema:name readcube_id
30 schema:value 122ab73022b55976c51006697618a96600810a3c11b4a18918b5f242b83510ea
31 rdf:type schema:PropertyValue
32 N93eff228e6b7410eb462c79427140cd7 rdf:first sg:person.01130533744.43
33 rdf:rest rdf:nil
34 Nb7c7a16ad1ec4dde96615b857054a906 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 Ncf4e79d965fc47cdab365308d1955379 schema:name doi
37 schema:value 10.1007/s00020-003-1220-5
38 rdf:type schema:PropertyValue
39 Nd54aaf1ac6dc4ed4b86e3ee2cf846bf8 schema:volumeNumber 50
40 rdf:type schema:PublicationVolume
41 Nf11a2b6a23594f28a20ad0386d3e7f14 schema:name dimensions_id
42 schema:value pub.1003813268
43 rdf:type schema:PropertyValue
44 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
45 schema:name Mathematical Sciences
46 rdf:type schema:DefinedTerm
47 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
48 schema:name Pure Mathematics
49 rdf:type schema:DefinedTerm
50 sg:journal.1136245 schema:issn 0378-620X
51 1420-8989
52 schema:name Integral Equations and Operator Theory
53 rdf:type schema:Periodical
54 sg:person.01130533744.43 schema:affiliation https://www.grid.ac/institutes/grid.264889.9
55 schema:familyName Bolotnikov
56 schema:givenName Vladimir
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43
58 rdf:type schema:Person
59 https://www.grid.ac/institutes/grid.264889.9 schema:alternateName College of William & Mary
60 schema:name Department of Mathematics, The College of William and Mary, 23187-8795, Williamsburg, VA, USA
61 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...