Generation and manipulation of human iPSC-derived platelets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-01-13

AUTHORS

Naoshi Sugimoto, Koji Eto

ABSTRACT

The discovery of iPSCs has led to the ex vivo production of differentiated cells for regenerative medicine. In the case of transfusion products, the derivation of platelets from iPSCs is expected to complement our current blood-donor supplied transfusion system through donor-independent production with complete pathogen-free assurance. This derivation can also overcome alloimmune platelet transfusion refractoriness by resulting in autologous, HLA-homologous or HLA-deficient products. Several developments were necessary to produce a massive number of platelets required for a single transfusion. First, expandable megakaryocytes were established from iPSCs through transgene expression. Second, a turbulent-type bioreactor with improved platelet yield and quality was developed. Third, novel drugs that enabled efficient feeder cell-free conditions were developed. Fourth, the platelet-containing suspension was purified and resuspended in an appropriate buffer. Finally, the platelet product needed to be assured for competency and safety including non-tumorigenicity through in vitro and in vivo preclinical tests. Based on these advancements, a clinical trial has started. The generation of human iPSC-derived platelets could evolve transfusion medicine to the next stage and assure a ubiquitous, safe supply of platelet products. Further, considering the feasibility of gene manipulations in iPSCs, other platelet products may bring forth novel therapeutic measures. More... »

PAGES

3385-3401

References to SciGraph publications

  • 2011-01-11. Platelets generated from human embryonic stem cells are functional in vitro and in the microcirculation of living mice in CELL RESEARCH
  • 2013-04-14. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis in NATURE MEDICINE
  • 1994-06. c-Mpl ligand is a humoral regulator of megakaryocytopoiesis in NATURE
  • 2016-02-22. Microfluidic model of the platelet-generating organ: beyond bone marrow biomimetics in SCIENTIFIC REPORTS
  • 2016-11-23. A view of human haematopoietic development from the Petri dish in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2017-05-15. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells in NATURE BIOTECHNOLOGY
  • 2016-01. Generation of HLA-Universal iPSC-Derived Megakaryocytes and Platelets for Survival Under Refractoriness Conditions in MOLECULAR MEDICINE
  • 2016-04-07. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming in NATURE COMMUNICATIONS
  • 2019-09-02. Overview: an iPS cell stock at CiRA in INFLAMMATION AND REGENERATION
  • 2003-12-21. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis in NATURE MEDICINE
  • 2017-03-22. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors in NATURE
  • 2017-07-01. Lung as a Niche for Hematopoietic Progenitors in STEM CELL REVIEWS AND REPORTS
  • 2007-12-23. Reprogramming of human somatic cells to pluripotency with defined factors in NATURE
  • 2011-03-24. Generation of dendritic cells and macrophages from human induced pluripotent stem cells aiming at cell therapy in GENE THERAPY
  • 1994-06. Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin in NATURE
  • 2017-05-17. Haematopoietic stem and progenitor cells from human pluripotent stem cells in NATURE
  • 2017-04-26. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations in NATURE
  • 1994-06. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand in NATURE
  • 2014-10-11. BMS-777607 promotes megakaryocytic differentiation and induces polyploidization in the CHRF-288-11 cells in HUMAN CELL
  • 2018-06-06. A revised road map for the commitment of human cord blood CD34-negative hematopoietic stem cells in NATURE COMMUNICATIONS
  • 2013-11-19. Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A in NATURE COMMUNICATIONS
  • 2020-05-21. Generation and characterization of HLA-universal platelets derived from induced pluripotent stem cells in SCIENTIFIC REPORTS
  • 2018-06-07. Definitive Erythropoiesis from Pluripotent Stem Cells: Recent Advances and Perspectives in CELL BIOLOGY AND TRANSLATIONAL MEDICINE, VOLUME 3
  • 2019-02-20. Genetic programming of macrophages generates an in vitro model for the human erythroid island niche in NATURE COMMUNICATIONS
  • 1994-06. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo in NATURE
  • 2018-12-07. The world’s first clinical trial for an aplastic anemia patient with thrombocytopenia administering platelets generated from autologous iPS cells in INTERNATIONAL JOURNAL OF HEMATOLOGY
  • 2008-04-18. Up on the tightrope: natural killer cell activation and inhibition in NATURE IMMUNOLOGY
  • 2011-01. Costs to hospitals of acquiring and processing blood in the US in APPLIED HEALTH ECONOMICS AND HEALTH POLICY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00018-020-03749-8

    DOI

    http://dx.doi.org/10.1007/s00018-020-03749-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1134527146

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/33439272


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Blood Platelets", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Blood Transfusion", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Differentiation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Induced Pluripotent Stem Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Megakaryocytes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Regenerative Medicine", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, 606-8507, Kyoto, Japan", 
              "id": "http://www.grid.ac/institutes/grid.258799.8", 
              "name": [
                "Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, 606-8507, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sugimoto", 
            "givenName": "Naoshi", 
            "id": "sg:person.0765060244.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765060244.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan", 
              "id": "http://www.grid.ac/institutes/grid.136304.3", 
              "name": [
                "Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, 606-8507, Kyoto, Japan", 
                "Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eto", 
            "givenName": "Koji", 
            "id": "sg:person.01062427654.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062427654.09"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/cr.2011.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027036709", 
              "https://doi.org/10.1038/cr.2011.8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/369565a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042518774", 
              "https://doi.org/10.1038/369565a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm973", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030063626", 
              "https://doi.org/10.1038/nm973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085058235", 
              "https://doi.org/10.1038/nature22312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011992920", 
              "https://doi.org/10.1038/nature06534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12185-018-02565-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110449016", 
              "https://doi.org/10.1007/s12185-018-02565-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep21700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046217351", 
              "https://doi.org/10.1038/srep21700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2119/molmed.2015.00235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068965808", 
              "https://doi.org/10.2119/molmed.2015.00235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/369571a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010954863", 
              "https://doi.org/10.1038/369571a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature21706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128596", 
              "https://doi.org/10.1038/nature21706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-04441-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104336719", 
              "https://doi.org/10.1038/s41467-018-04441-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s41232-019-0106-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120757466", 
              "https://doi.org/10.1186/s41232-019-0106-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.3150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042005313", 
              "https://doi.org/10.1038/nm.3150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-08705-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112228607", 
              "https://doi.org/10.1038/s41467-019-08705-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12015-017-9747-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090324187", 
              "https://doi.org/10.1007/s12015-017-9747-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010149636", 
              "https://doi.org/10.1038/ncomms11208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2165/11530740-000000000-00000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004207408", 
              "https://doi.org/10.2165/11530740-000000000-00000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22370", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085425572", 
              "https://doi.org/10.1038/nature22370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13577-014-0102-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031719099", 
              "https://doi.org/10.1007/s13577-014-0102-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/5584_2018_228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104421240", 
              "https://doi.org/10.1007/5584_2018_228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3773", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017638279", 
              "https://doi.org/10.1038/ncomms3773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/369533a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013050793", 
              "https://doi.org/10.1038/369533a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3860", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085412850", 
              "https://doi.org/10.1038/nbt.3860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni1581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014028862", 
              "https://doi.org/10.1038/ni1581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gt.2011.22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043395292", 
              "https://doi.org/10.1038/gt.2011.22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm.2016.127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009328776", 
              "https://doi.org/10.1038/nrm.2016.127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-020-65577-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127764875", 
              "https://doi.org/10.1038/s41598-020-65577-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/369568a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052720434", 
              "https://doi.org/10.1038/369568a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-01-13", 
        "datePublishedReg": "2021-01-13", 
        "description": "The discovery of iPSCs has led to the ex vivo production of differentiated cells for regenerative medicine. In the case of transfusion products, the derivation of platelets from iPSCs is expected to complement our current blood-donor supplied transfusion system through donor-independent production with complete pathogen-free assurance. This derivation can also overcome alloimmune platelet transfusion refractoriness by resulting in autologous, HLA-homologous or HLA-deficient products. Several developments were necessary to produce a massive number of platelets required for a single transfusion. First, expandable megakaryocytes were established from iPSCs through transgene expression. Second, a turbulent-type bioreactor with improved platelet yield and quality was developed. Third, novel drugs that enabled efficient feeder cell-free conditions were developed. Fourth, the platelet-containing suspension was purified and resuspended in an appropriate buffer. Finally, the platelet product needed to be assured for competency and safety including non-tumorigenicity through in vitro and in vivo preclinical tests. Based on these advancements, a clinical trial has started. The generation of human iPSC-derived platelets could evolve transfusion medicine to the next stage and assure a ubiquitous, safe supply of platelet products. Further, considering the feasibility of gene manipulations in iPSCs, other platelet products may bring forth novel therapeutic measures.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00018-020-03749-8", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7523713", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8537604", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5614912", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1295005", 
            "issn": [
              "1420-682X", 
              "1420-9071"
            ], 
            "name": "Cellular and Molecular Life Sciences", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "78"
          }
        ], 
        "keywords": [
          "discovery of iPSCs", 
          "feeder cell-free conditions", 
          "vivo preclinical tests", 
          "alloimmune platelet transfusion", 
          "transgene expression", 
          "human iPSC", 
          "regenerative medicine", 
          "massive number", 
          "platelet products", 
          "gene manipulation", 
          "iPSCs", 
          "ex vivo production", 
          "novel therapeutic measures", 
          "vivo production", 
          "single transfusion", 
          "platelet transfusions", 
          "clinical trials", 
          "therapeutic measures", 
          "transfusion products", 
          "differentiated cells", 
          "iPSCs", 
          "transfusion system", 
          "novel drugs", 
          "preclinical tests", 
          "transfusion medicine", 
          "transfusion", 
          "platelets", 
          "bioreactor", 
          "cell-free conditions", 
          "manipulation", 
          "safe supply", 
          "platelet yield", 
          "appropriate buffer", 
          "medicine", 
          "HLA", 
          "advancement", 
          "generation", 
          "trials", 
          "production", 
          "products", 
          "drugs", 
          "buffer", 
          "suspension", 
          "megakaryocytes", 
          "safety", 
          "cells", 
          "yield", 
          "expression", 
          "feasibility", 
          "next stage", 
          "cases", 
          "system", 
          "measures", 
          "test", 
          "quality", 
          "discovery", 
          "stage", 
          "development", 
          "number", 
          "supply", 
          "conditions", 
          "derivation", 
          "competencies", 
          "assurance"
        ], 
        "name": "Generation and manipulation of human iPSC-derived platelets", 
        "pagination": "3385-3401", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1134527146"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00018-020-03749-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "33439272"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00018-020-03749-8", 
          "https://app.dimensions.ai/details/publication/pub.1134527146"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_889.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00018-020-03749-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00018-020-03749-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00018-020-03749-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00018-020-03749-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00018-020-03749-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    285 TRIPLES      21 PREDICATES      124 URIs      88 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00018-020-03749-8 schema:about N0c746f2f974c489c843377f5e8ae2478
    2 N1385aca330f34ee193774380f9b7bad5
    3 N24790ce6a5b34cff9f48344009cc1704
    4 N2cf47b7cd9954cd4bfb7907e00bb094d
    5 N31457eaa9afc489c84fd26d1a894c7bd
    6 N4aeb107ef1d6453e9d6e3e28c501bc10
    7 N6009a05e606f408eb0a223a0ad395c55
    8 Nb828218025cb4535a662f267749b373d
    9 anzsrc-for:11
    10 anzsrc-for:1102
    11 schema:author N73463111611e46b98aaebdd927bb2489
    12 schema:citation sg:pub.10.1007/5584_2018_228
    13 sg:pub.10.1007/s12015-017-9747-z
    14 sg:pub.10.1007/s12185-018-02565-y
    15 sg:pub.10.1007/s13577-014-0102-2
    16 sg:pub.10.1038/369533a0
    17 sg:pub.10.1038/369565a0
    18 sg:pub.10.1038/369568a0
    19 sg:pub.10.1038/369571a0
    20 sg:pub.10.1038/cr.2011.8
    21 sg:pub.10.1038/gt.2011.22
    22 sg:pub.10.1038/nature06534
    23 sg:pub.10.1038/nature21706
    24 sg:pub.10.1038/nature22312
    25 sg:pub.10.1038/nature22370
    26 sg:pub.10.1038/nbt.3860
    27 sg:pub.10.1038/ncomms11208
    28 sg:pub.10.1038/ncomms3773
    29 sg:pub.10.1038/ni1581
    30 sg:pub.10.1038/nm.3150
    31 sg:pub.10.1038/nm973
    32 sg:pub.10.1038/nrm.2016.127
    33 sg:pub.10.1038/s41467-018-04441-z
    34 sg:pub.10.1038/s41467-019-08705-0
    35 sg:pub.10.1038/s41598-020-65577-x
    36 sg:pub.10.1038/srep21700
    37 sg:pub.10.1186/s41232-019-0106-0
    38 sg:pub.10.2119/molmed.2015.00235
    39 sg:pub.10.2165/11530740-000000000-00000
    40 schema:datePublished 2021-01-13
    41 schema:datePublishedReg 2021-01-13
    42 schema:description The discovery of iPSCs has led to the ex vivo production of differentiated cells for regenerative medicine. In the case of transfusion products, the derivation of platelets from iPSCs is expected to complement our current blood-donor supplied transfusion system through donor-independent production with complete pathogen-free assurance. This derivation can also overcome alloimmune platelet transfusion refractoriness by resulting in autologous, HLA-homologous or HLA-deficient products. Several developments were necessary to produce a massive number of platelets required for a single transfusion. First, expandable megakaryocytes were established from iPSCs through transgene expression. Second, a turbulent-type bioreactor with improved platelet yield and quality was developed. Third, novel drugs that enabled efficient feeder cell-free conditions were developed. Fourth, the platelet-containing suspension was purified and resuspended in an appropriate buffer. Finally, the platelet product needed to be assured for competency and safety including non-tumorigenicity through in vitro and in vivo preclinical tests. Based on these advancements, a clinical trial has started. The generation of human iPSC-derived platelets could evolve transfusion medicine to the next stage and assure a ubiquitous, safe supply of platelet products. Further, considering the feasibility of gene manipulations in iPSCs, other platelet products may bring forth novel therapeutic measures.
    43 schema:genre article
    44 schema:isAccessibleForFree true
    45 schema:isPartOf N4677ca3817f5466dbcb4e25026b91947
    46 Ncd291bacdc6f4c6fb7e3f2d22cfb7bfc
    47 sg:journal.1295005
    48 schema:keywords HLA
    49 advancement
    50 alloimmune platelet transfusion
    51 appropriate buffer
    52 assurance
    53 bioreactor
    54 buffer
    55 cases
    56 cell-free conditions
    57 cells
    58 clinical trials
    59 competencies
    60 conditions
    61 derivation
    62 development
    63 differentiated cells
    64 discovery
    65 discovery of iPSCs
    66 drugs
    67 ex vivo production
    68 expression
    69 feasibility
    70 feeder cell-free conditions
    71 gene manipulation
    72 generation
    73 human iPSC
    74 iPSCs
    75 manipulation
    76 massive number
    77 measures
    78 medicine
    79 megakaryocytes
    80 next stage
    81 novel drugs
    82 novel therapeutic measures
    83 number
    84 platelet products
    85 platelet transfusions
    86 platelet yield
    87 platelets
    88 preclinical tests
    89 production
    90 products
    91 quality
    92 regenerative medicine
    93 safe supply
    94 safety
    95 single transfusion
    96 stage
    97 supply
    98 suspension
    99 system
    100 test
    101 therapeutic measures
    102 transfusion
    103 transfusion medicine
    104 transfusion products
    105 transfusion system
    106 transgene expression
    107 trials
    108 vivo preclinical tests
    109 vivo production
    110 yield
    111 schema:name Generation and manipulation of human iPSC-derived platelets
    112 schema:pagination 3385-3401
    113 schema:productId N4457e2d8343b4a7c8f9af856e9b0bdba
    114 N7b24b95b49f544a2a982c1d184195844
    115 Ncf5b7517d709473eb1c8f25e51d41f49
    116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134527146
    117 https://doi.org/10.1007/s00018-020-03749-8
    118 schema:sdDatePublished 2022-09-02T16:05
    119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    120 schema:sdPublisher N742041f284ea4defa5511dc2ee0c8b2e
    121 schema:url https://doi.org/10.1007/s00018-020-03749-8
    122 sgo:license sg:explorer/license/
    123 sgo:sdDataset articles
    124 rdf:type schema:ScholarlyArticle
    125 N0c746f2f974c489c843377f5e8ae2478 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Megakaryocytes
    127 rdf:type schema:DefinedTerm
    128 N1385aca330f34ee193774380f9b7bad5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Blood Platelets
    130 rdf:type schema:DefinedTerm
    131 N24790ce6a5b34cff9f48344009cc1704 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Regenerative Medicine
    133 rdf:type schema:DefinedTerm
    134 N2cf47b7cd9954cd4bfb7907e00bb094d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Induced Pluripotent Stem Cells
    136 rdf:type schema:DefinedTerm
    137 N31457eaa9afc489c84fd26d1a894c7bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Humans
    139 rdf:type schema:DefinedTerm
    140 N4457e2d8343b4a7c8f9af856e9b0bdba schema:name pubmed_id
    141 schema:value 33439272
    142 rdf:type schema:PropertyValue
    143 N4677ca3817f5466dbcb4e25026b91947 schema:issueNumber 7
    144 rdf:type schema:PublicationIssue
    145 N4aeb107ef1d6453e9d6e3e28c501bc10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Animals
    147 rdf:type schema:DefinedTerm
    148 N6009a05e606f408eb0a223a0ad395c55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Blood Transfusion
    150 rdf:type schema:DefinedTerm
    151 N73463111611e46b98aaebdd927bb2489 rdf:first sg:person.0765060244.70
    152 rdf:rest N94d11be359444014a8ad18bb4c8f3c5c
    153 N742041f284ea4defa5511dc2ee0c8b2e schema:name Springer Nature - SN SciGraph project
    154 rdf:type schema:Organization
    155 N7b24b95b49f544a2a982c1d184195844 schema:name doi
    156 schema:value 10.1007/s00018-020-03749-8
    157 rdf:type schema:PropertyValue
    158 N94d11be359444014a8ad18bb4c8f3c5c rdf:first sg:person.01062427654.09
    159 rdf:rest rdf:nil
    160 Nb828218025cb4535a662f267749b373d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Cell Differentiation
    162 rdf:type schema:DefinedTerm
    163 Ncd291bacdc6f4c6fb7e3f2d22cfb7bfc schema:volumeNumber 78
    164 rdf:type schema:PublicationVolume
    165 Ncf5b7517d709473eb1c8f25e51d41f49 schema:name dimensions_id
    166 schema:value pub.1134527146
    167 rdf:type schema:PropertyValue
    168 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    169 schema:name Medical and Health Sciences
    170 rdf:type schema:DefinedTerm
    171 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    172 schema:name Cardiorespiratory Medicine and Haematology
    173 rdf:type schema:DefinedTerm
    174 sg:grant.5614912 http://pending.schema.org/fundedItem sg:pub.10.1007/s00018-020-03749-8
    175 rdf:type schema:MonetaryGrant
    176 sg:grant.7523713 http://pending.schema.org/fundedItem sg:pub.10.1007/s00018-020-03749-8
    177 rdf:type schema:MonetaryGrant
    178 sg:grant.8537604 http://pending.schema.org/fundedItem sg:pub.10.1007/s00018-020-03749-8
    179 rdf:type schema:MonetaryGrant
    180 sg:journal.1295005 schema:issn 1420-682X
    181 1420-9071
    182 schema:name Cellular and Molecular Life Sciences
    183 schema:publisher Springer Nature
    184 rdf:type schema:Periodical
    185 sg:person.01062427654.09 schema:affiliation grid-institutes:grid.136304.3
    186 schema:familyName Eto
    187 schema:givenName Koji
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062427654.09
    189 rdf:type schema:Person
    190 sg:person.0765060244.70 schema:affiliation grid-institutes:grid.258799.8
    191 schema:familyName Sugimoto
    192 schema:givenName Naoshi
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765060244.70
    194 rdf:type schema:Person
    195 sg:pub.10.1007/5584_2018_228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104421240
    196 https://doi.org/10.1007/5584_2018_228
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s12015-017-9747-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1090324187
    199 https://doi.org/10.1007/s12015-017-9747-z
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s12185-018-02565-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1110449016
    202 https://doi.org/10.1007/s12185-018-02565-y
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s13577-014-0102-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031719099
    205 https://doi.org/10.1007/s13577-014-0102-2
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/369533a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013050793
    208 https://doi.org/10.1038/369533a0
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/369565a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042518774
    211 https://doi.org/10.1038/369565a0
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/369568a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052720434
    214 https://doi.org/10.1038/369568a0
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/369571a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010954863
    217 https://doi.org/10.1038/369571a0
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/cr.2011.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027036709
    220 https://doi.org/10.1038/cr.2011.8
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/gt.2011.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043395292
    223 https://doi.org/10.1038/gt.2011.22
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nature06534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011992920
    226 https://doi.org/10.1038/nature06534
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/nature21706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128596
    229 https://doi.org/10.1038/nature21706
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/nature22312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085058235
    232 https://doi.org/10.1038/nature22312
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nature22370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085425572
    235 https://doi.org/10.1038/nature22370
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/nbt.3860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085412850
    238 https://doi.org/10.1038/nbt.3860
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/ncomms11208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010149636
    241 https://doi.org/10.1038/ncomms11208
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/ncomms3773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017638279
    244 https://doi.org/10.1038/ncomms3773
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/ni1581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014028862
    247 https://doi.org/10.1038/ni1581
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/nm.3150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042005313
    250 https://doi.org/10.1038/nm.3150
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/nm973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030063626
    253 https://doi.org/10.1038/nm973
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/nrm.2016.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009328776
    256 https://doi.org/10.1038/nrm.2016.127
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/s41467-018-04441-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1104336719
    259 https://doi.org/10.1038/s41467-018-04441-z
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/s41467-019-08705-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112228607
    262 https://doi.org/10.1038/s41467-019-08705-0
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/s41598-020-65577-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1127764875
    265 https://doi.org/10.1038/s41598-020-65577-x
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/srep21700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046217351
    268 https://doi.org/10.1038/srep21700
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1186/s41232-019-0106-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120757466
    271 https://doi.org/10.1186/s41232-019-0106-0
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.2119/molmed.2015.00235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068965808
    274 https://doi.org/10.2119/molmed.2015.00235
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.2165/11530740-000000000-00000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004207408
    277 https://doi.org/10.2165/11530740-000000000-00000
    278 rdf:type schema:CreativeWork
    279 grid-institutes:grid.136304.3 schema:alternateName Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
    280 schema:name Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, 606-8507, Kyoto, Japan
    281 Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
    282 rdf:type schema:Organization
    283 grid-institutes:grid.258799.8 schema:alternateName Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, 606-8507, Kyoto, Japan
    284 schema:name Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, 606-8507, Kyoto, Japan
    285 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...