RNA-seq: from technology to biology View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-10-27

AUTHORS

Samuel Marguerat, Jürg Bähler

ABSTRACT

Next-generation sequencing technologies are now being exploited not only to analyse static genomes, but also dynamic transcriptomes in an approach termed RNA-seq. Although these powerful and rapidly evolving technologies have only been available for a couple of years, they are already making substantial contributions to our understanding of genome expression and regulation. Here, we briefly describe technical issues accompanying RNA-seq data generation and analysis, highlighting differences to array-based approaches. We then review recent biological insight gained from applying RNA-seq and related approaches to deeply sample transcriptomes in different cell types or physiological conditions. These approaches are providing fascinating information about transcriptional and post-transcriptional gene regulation, and they are also giving unique insight into the richness of transcript structures and processing on a global scale and at unprecedented resolution. More... »

PAGES

569-579

References to SciGraph publications

  • 2009-01-11. An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2007-09-20. Soil eukaryotic functional diversity, a metatranscriptomic approach in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2005-04. Applications of DNA tiling arrays to experimental genome annotation and regulatory pathway discovery in CHROMOSOME RESEARCH
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2008-05-30. Stem cell transcriptome profiling via massive-scale mRNA sequencing in NATURE METHODS
  • 2009-05-12. Measuring differential gene expression by short read sequencing: quantitative comparison to 2-channel gene expression microarrays in BMC GENOMICS
  • 2008-05-30. Mapping and quantifying mammalian transcriptomes by RNA-Seq in NATURE METHODS
  • 2009-01. RNA-Seq: a revolutionary tool for transcriptomics in NATURE REVIEWS GENETICS
  • 2009-02-24. QSRA – a quality-value guided de novo short read assembler in BMC BIOINFORMATICS
  • 2009-04-20. A transcriptional sketch of a primary human breast cancer by 454 deep sequencing in BMC GENOMICS
  • 2009-03-04. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome in GENOME BIOLOGY
  • 2008-12-16. Annotating genomes with massive-scale RNA sequencing in GENOME BIOLOGY
  • 2008-09-07. TRAMP-mediated RNA surveillance prevents spurious entry of RNAs into the Schizosaccharomyces pombe siRNA pathway in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2009-06-17. Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps in NATURE
  • 2008-10-13. Probabilistic base calling of Solexa sequencing data in BMC BIOINFORMATICS
  • 2008-05-18. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution in NATURE
  • 2009-01-25. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast in NATURE
  • 2009-01-25. Bidirectional promoters generate pervasive transcription in yeast in NATURE
  • 2008-01-13. Pyrobayes: an improved base caller for SNP discovery in pyrosequences in NATURE METHODS
  • 2008-08. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation in NATURE REVIEWS GENETICS
  • 2009-03-15. Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+C)-biased genomes in NATURE METHODS
  • 2008-11-27. Alternative isoform regulation in human tissue transcriptomes in NATURE
  • 2009-04-06. mRNA-Seq whole-transcriptome analysis of a single cell in NATURE METHODS
  • 2009-05-19. Gene discovery using massively parallel pyrosequencing to develop ESTs for the flesh fly Sarcophaga crassipalpis in BMC GENOMICS
  • 2007-03-15. The impact of translocations and gene fusions on cancer causation in NATURE REVIEWS CANCER
  • 2007-05-08. Genome-wide transcription and the implications for genomic organization in NATURE REVIEWS GENETICS
  • 2007-02. Transcriptional noise and the fidelity of initiation by RNA polymerase II in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2009-07-05. Quantification of the yeast transcriptome by single-molecule sequencing in NATURE BIOTECHNOLOGY
  • 2009-04-19. Tiny RNAs associated with transcription start sites in animals in NATURE GENETICS
  • 2008-11-02. HITS-CLIP yields genome-wide insights into brain alternative RNA processing in NATURE
  • 2000-06. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays in NATURE BIOTECHNOLOGY
  • 2008-11-02. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing in NATURE GENETICS
  • 2009-03. Nucleosome positioning and gene regulation: advances through genomics in NATURE REVIEWS GENETICS
  • 2009-01-11. Transcriptome sequencing to detect gene fusions in cancer in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00018-009-0180-6

    DOI

    http://dx.doi.org/10.1007/s00018-009-0180-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025064165

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19859660


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotide Array Sequence Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription, Genetic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Genetics, Evolution and Environment, UCL Cancer Institute, University College London, Darwin Building, Gower Street, WC1E 6BT, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.83440.3b", 
              "name": [
                "Department of Genetics, Evolution and Environment, UCL Cancer Institute, University College London, Darwin Building, Gower Street, WC1E 6BT, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marguerat", 
            "givenName": "Samuel", 
            "id": "sg:person.0753754422.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753754422.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Genetics, Evolution and Environment, UCL Cancer Institute, University College London, Darwin Building, Gower Street, WC1E 6BT, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.83440.3b", 
              "name": [
                "Department of Genetics, Evolution and Environment, UCL Cancer Institute, University College London, Darwin Building, Gower Street, WC1E 6BT, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "B\u00e4hler", 
            "givenName": "J\u00fcrg", 
            "id": "sg:person.01351425155.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351425155.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmeth.1223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048586936", 
              "https://doi.org/10.1038/nmeth.1223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009442631", 
              "https://doi.org/10.1038/nature07638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030687647", 
              "https://doi.org/10.1038/nrg2484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022155307", 
              "https://doi.org/10.1038/nmeth.1315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045137706", 
              "https://doi.org/10.1038/nature08170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010878542", 
              "https://doi.org/10.1186/1471-2105-9-431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045381177", 
              "https://doi.org/10.1038/nmeth.1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc2091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043783272", 
              "https://doi.org/10.1038/nrc2091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/76469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028559169", 
              "https://doi.org/10.1038/76469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022799441", 
              "https://doi.org/10.1038/nrg2398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.1545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048478152", 
              "https://doi.org/10.1038/nsmb.1545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-10-163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047334201", 
              "https://doi.org/10.1186/1471-2164-10-163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-10-221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010098420", 
              "https://doi.org/10.1186/1471-2164-10-221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-69", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001878181", 
              "https://doi.org/10.1186/1471-2105-10-69"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07488", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010813801", 
              "https://doi.org/10.1038/nature07488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023653905", 
              "https://doi.org/10.1038/nmeth.1311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039844797", 
              "https://doi.org/10.1038/nbt.1551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07747", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038183853", 
              "https://doi.org/10.1038/nature07747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044718936", 
              "https://doi.org/10.1038/nature07002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025632491", 
              "https://doi.org/10.1038/nrg2083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2180-8-72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012168914", 
              "https://doi.org/10.1186/1471-2180-8-72"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2007.68", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029614044", 
              "https://doi.org/10.1038/ismej.2007.68"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029002744", 
              "https://doi.org/10.1038/nature07509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.1481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026942741", 
              "https://doi.org/10.1038/nsmb.1481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-10-234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022615571", 
              "https://doi.org/10.1186/1471-2164-10-234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2008-9-12-r175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016469219", 
              "https://doi.org/10.1186/gb-2008-9-12-r175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049583368", 
              "https://doi.org/10.1186/gb-2009-10-3-r25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030298472", 
              "https://doi.org/10.1038/nature07728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030550694", 
              "https://doi.org/10.1038/nrg2522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000428682", 
              "https://doi.org/10.1038/ng.312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10577-005-2165-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032588081", 
              "https://doi.org/10.1007/s10577-005-2165-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb0207-103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042141499", 
              "https://doi.org/10.1038/nsmb0207-103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020593059", 
              "https://doi.org/10.1038/nmeth.1172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050283464", 
              "https://doi.org/10.1038/ng.259"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-10-27", 
        "datePublishedReg": "2009-10-27", 
        "description": "Next-generation sequencing technologies are now being exploited not only to analyse static genomes, but also dynamic transcriptomes in an approach termed RNA-seq. Although these powerful and rapidly evolving technologies have only been available for a couple of years, they are already making substantial contributions to our understanding of genome expression and regulation. Here, we briefly describe technical issues accompanying RNA-seq data generation and analysis, highlighting differences to array-based approaches. We then review recent biological insight gained from applying RNA-seq and related approaches to deeply sample transcriptomes in different cell types or physiological conditions. These approaches are providing fascinating information about transcriptional and post-transcriptional gene regulation, and they are also giving unique insight into the richness of transcript structures and processing on a global scale and at unprecedented resolution.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00018-009-0180-6", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1295005", 
            "issn": [
              "1420-682X", 
              "1420-9071"
            ], 
            "name": "Cellular and Molecular Life Sciences", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "67"
          }
        ], 
        "keywords": [
          "RNA-seq", 
          "post-transcriptional gene regulation", 
          "next-generation sequencing technologies", 
          "static genome", 
          "different cell types", 
          "dynamic transcriptome", 
          "gene regulation", 
          "genome expression", 
          "array-based approach", 
          "recent biological insights", 
          "transcript structure", 
          "sequencing technologies", 
          "biological insights", 
          "cell types", 
          "sample transcriptome", 
          "unprecedented resolution", 
          "transcriptome", 
          "physiological conditions", 
          "regulation", 
          "fascinating information", 
          "genome", 
          "richness", 
          "unique insights", 
          "biology", 
          "global scale", 
          "insights", 
          "expression", 
          "substantial contribution", 
          "understanding", 
          "structure", 
          "data generation", 
          "generation", 
          "analysis", 
          "types", 
          "approach", 
          "conditions", 
          "differences", 
          "resolution", 
          "contribution", 
          "information", 
          "technology", 
          "processing", 
          "scale", 
          "years", 
          "couple of years", 
          "couples", 
          "technical issues", 
          "issues"
        ], 
        "name": "RNA-seq: from technology to biology", 
        "pagination": "569-579", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025064165"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00018-009-0180-6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19859660"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00018-009-0180-6", 
          "https://app.dimensions.ai/details/publication/pub.1025064165"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_496.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00018-009-0180-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00018-009-0180-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00018-009-0180-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00018-009-0180-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00018-009-0180-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    280 TRIPLES      21 PREDICATES      114 URIs      72 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00018-009-0180-6 schema:about N2354ab907f8d4451bd7d93712ff04685
    2 N26bbcea335be408b9907ca76f993d4db
    3 N77743aef746f4b288b35cecaa5bac071
    4 N7aa75d45dc044c4a8c73f75a486dcee6
    5 N88d64045d914442ba497400f9586ce7f
    6 Ne12f1d1f6de74b8692316b83c8f95902
    7 Nf63b736c8fa849c4abe347f6a84ab2f8
    8 anzsrc-for:06
    9 anzsrc-for:0604
    10 schema:author Nf15743df36af49979e38874cdaa3112d
    11 schema:citation sg:pub.10.1007/s10577-005-2165-0
    12 sg:pub.10.1038/76469
    13 sg:pub.10.1038/ismej.2007.68
    14 sg:pub.10.1038/nature07002
    15 sg:pub.10.1038/nature07488
    16 sg:pub.10.1038/nature07509
    17 sg:pub.10.1038/nature07638
    18 sg:pub.10.1038/nature07728
    19 sg:pub.10.1038/nature07747
    20 sg:pub.10.1038/nature08170
    21 sg:pub.10.1038/nbt.1551
    22 sg:pub.10.1038/ng.259
    23 sg:pub.10.1038/ng.312
    24 sg:pub.10.1038/nmeth.1172
    25 sg:pub.10.1038/nmeth.1223
    26 sg:pub.10.1038/nmeth.1226
    27 sg:pub.10.1038/nmeth.1311
    28 sg:pub.10.1038/nmeth.1315
    29 sg:pub.10.1038/nrc2091
    30 sg:pub.10.1038/nrg2083
    31 sg:pub.10.1038/nrg2398
    32 sg:pub.10.1038/nrg2484
    33 sg:pub.10.1038/nrg2522
    34 sg:pub.10.1038/nsmb.1481
    35 sg:pub.10.1038/nsmb.1545
    36 sg:pub.10.1038/nsmb0207-103
    37 sg:pub.10.1186/1471-2105-10-69
    38 sg:pub.10.1186/1471-2105-9-431
    39 sg:pub.10.1186/1471-2164-10-163
    40 sg:pub.10.1186/1471-2164-10-221
    41 sg:pub.10.1186/1471-2164-10-234
    42 sg:pub.10.1186/1471-2180-8-72
    43 sg:pub.10.1186/gb-2008-9-12-r175
    44 sg:pub.10.1186/gb-2009-10-3-r25
    45 schema:datePublished 2009-10-27
    46 schema:datePublishedReg 2009-10-27
    47 schema:description Next-generation sequencing technologies are now being exploited not only to analyse static genomes, but also dynamic transcriptomes in an approach termed RNA-seq. Although these powerful and rapidly evolving technologies have only been available for a couple of years, they are already making substantial contributions to our understanding of genome expression and regulation. Here, we briefly describe technical issues accompanying RNA-seq data generation and analysis, highlighting differences to array-based approaches. We then review recent biological insight gained from applying RNA-seq and related approaches to deeply sample transcriptomes in different cell types or physiological conditions. These approaches are providing fascinating information about transcriptional and post-transcriptional gene regulation, and they are also giving unique insight into the richness of transcript structures and processing on a global scale and at unprecedented resolution.
    48 schema:genre article
    49 schema:isAccessibleForFree true
    50 schema:isPartOf Nca10f11cd5ed410294000cc55815f908
    51 Ndda9574175be48fa94da41e070e43e59
    52 sg:journal.1295005
    53 schema:keywords RNA-seq
    54 analysis
    55 approach
    56 array-based approach
    57 biological insights
    58 biology
    59 cell types
    60 conditions
    61 contribution
    62 couple of years
    63 couples
    64 data generation
    65 differences
    66 different cell types
    67 dynamic transcriptome
    68 expression
    69 fascinating information
    70 gene regulation
    71 generation
    72 genome
    73 genome expression
    74 global scale
    75 information
    76 insights
    77 issues
    78 next-generation sequencing technologies
    79 physiological conditions
    80 post-transcriptional gene regulation
    81 processing
    82 recent biological insights
    83 regulation
    84 resolution
    85 richness
    86 sample transcriptome
    87 scale
    88 sequencing technologies
    89 static genome
    90 structure
    91 substantial contribution
    92 technical issues
    93 technology
    94 transcript structure
    95 transcriptome
    96 types
    97 understanding
    98 unique insights
    99 unprecedented resolution
    100 years
    101 schema:name RNA-seq: from technology to biology
    102 schema:pagination 569-579
    103 schema:productId N0ca370212900432995e14ea8a524ba67
    104 N5172ffb562d74d4e8cf9a3b5ea9d867c
    105 N7e37ba68f87040e5b033b9c74da900f5
    106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025064165
    107 https://doi.org/10.1007/s00018-009-0180-6
    108 schema:sdDatePublished 2022-11-24T20:53
    109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    110 schema:sdPublisher N7db607c41b8046cdb7fa99314b3c99c7
    111 schema:url https://doi.org/10.1007/s00018-009-0180-6
    112 sgo:license sg:explorer/license/
    113 sgo:sdDataset articles
    114 rdf:type schema:ScholarlyArticle
    115 N0ca370212900432995e14ea8a524ba67 schema:name doi
    116 schema:value 10.1007/s00018-009-0180-6
    117 rdf:type schema:PropertyValue
    118 N2354ab907f8d4451bd7d93712ff04685 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Transcription, Genetic
    120 rdf:type schema:DefinedTerm
    121 N26bbcea335be408b9907ca76f993d4db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Animals
    123 rdf:type schema:DefinedTerm
    124 N5172ffb562d74d4e8cf9a3b5ea9d867c schema:name dimensions_id
    125 schema:value pub.1025064165
    126 rdf:type schema:PropertyValue
    127 N77743aef746f4b288b35cecaa5bac071 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Sequence Analysis, RNA
    129 rdf:type schema:DefinedTerm
    130 N7aa75d45dc044c4a8c73f75a486dcee6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Gene Expression Regulation
    132 rdf:type schema:DefinedTerm
    133 N7db607c41b8046cdb7fa99314b3c99c7 schema:name Springer Nature - SN SciGraph project
    134 rdf:type schema:Organization
    135 N7e37ba68f87040e5b033b9c74da900f5 schema:name pubmed_id
    136 schema:value 19859660
    137 rdf:type schema:PropertyValue
    138 N88d64045d914442ba497400f9586ce7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Mice
    140 rdf:type schema:DefinedTerm
    141 Na8cefd95d5d246c0b6743855ef85e7ad rdf:first sg:person.01351425155.03
    142 rdf:rest rdf:nil
    143 Nca10f11cd5ed410294000cc55815f908 schema:volumeNumber 67
    144 rdf:type schema:PublicationVolume
    145 Ndda9574175be48fa94da41e070e43e59 schema:issueNumber 4
    146 rdf:type schema:PublicationIssue
    147 Ne12f1d1f6de74b8692316b83c8f95902 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Oligonucleotide Array Sequence Analysis
    149 rdf:type schema:DefinedTerm
    150 Nf15743df36af49979e38874cdaa3112d rdf:first sg:person.0753754422.82
    151 rdf:rest Na8cefd95d5d246c0b6743855ef85e7ad
    152 Nf63b736c8fa849c4abe347f6a84ab2f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Humans
    154 rdf:type schema:DefinedTerm
    155 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Biological Sciences
    157 rdf:type schema:DefinedTerm
    158 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Genetics
    160 rdf:type schema:DefinedTerm
    161 sg:journal.1295005 schema:issn 1420-682X
    162 1420-9071
    163 schema:name Cellular and Molecular Life Sciences
    164 schema:publisher Springer Nature
    165 rdf:type schema:Periodical
    166 sg:person.01351425155.03 schema:affiliation grid-institutes:grid.83440.3b
    167 schema:familyName Bähler
    168 schema:givenName Jürg
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351425155.03
    170 rdf:type schema:Person
    171 sg:person.0753754422.82 schema:affiliation grid-institutes:grid.83440.3b
    172 schema:familyName Marguerat
    173 schema:givenName Samuel
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753754422.82
    175 rdf:type schema:Person
    176 sg:pub.10.1007/s10577-005-2165-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032588081
    177 https://doi.org/10.1007/s10577-005-2165-0
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/76469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028559169
    180 https://doi.org/10.1038/76469
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/ismej.2007.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029614044
    183 https://doi.org/10.1038/ismej.2007.68
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nature07002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044718936
    186 https://doi.org/10.1038/nature07002
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/nature07488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010813801
    189 https://doi.org/10.1038/nature07488
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nature07509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029002744
    192 https://doi.org/10.1038/nature07509
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nature07638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009442631
    195 https://doi.org/10.1038/nature07638
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nature07728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030298472
    198 https://doi.org/10.1038/nature07728
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nature07747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038183853
    201 https://doi.org/10.1038/nature07747
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nature08170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045137706
    204 https://doi.org/10.1038/nature08170
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nbt.1551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039844797
    207 https://doi.org/10.1038/nbt.1551
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/ng.259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050283464
    210 https://doi.org/10.1038/ng.259
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/ng.312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000428682
    213 https://doi.org/10.1038/ng.312
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nmeth.1172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020593059
    216 https://doi.org/10.1038/nmeth.1172
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nmeth.1223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048586936
    219 https://doi.org/10.1038/nmeth.1223
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
    222 https://doi.org/10.1038/nmeth.1226
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nmeth.1311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023653905
    225 https://doi.org/10.1038/nmeth.1311
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nmeth.1315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022155307
    228 https://doi.org/10.1038/nmeth.1315
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nrc2091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043783272
    231 https://doi.org/10.1038/nrc2091
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nrg2083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025632491
    234 https://doi.org/10.1038/nrg2083
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nrg2398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022799441
    237 https://doi.org/10.1038/nrg2398
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/nrg2484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030687647
    240 https://doi.org/10.1038/nrg2484
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nrg2522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030550694
    243 https://doi.org/10.1038/nrg2522
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nsmb.1481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026942741
    246 https://doi.org/10.1038/nsmb.1481
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nsmb.1545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048478152
    249 https://doi.org/10.1038/nsmb.1545
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nsmb0207-103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042141499
    252 https://doi.org/10.1038/nsmb0207-103
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1186/1471-2105-10-69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001878181
    255 https://doi.org/10.1186/1471-2105-10-69
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1186/1471-2105-9-431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010878542
    258 https://doi.org/10.1186/1471-2105-9-431
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1186/1471-2164-10-163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047334201
    261 https://doi.org/10.1186/1471-2164-10-163
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1186/1471-2164-10-221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010098420
    264 https://doi.org/10.1186/1471-2164-10-221
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1186/1471-2164-10-234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022615571
    267 https://doi.org/10.1186/1471-2164-10-234
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1186/1471-2180-8-72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012168914
    270 https://doi.org/10.1186/1471-2180-8-72
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1186/gb-2008-9-12-r175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016469219
    273 https://doi.org/10.1186/gb-2008-9-12-r175
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
    276 https://doi.org/10.1186/gb-2009-10-3-r25
    277 rdf:type schema:CreativeWork
    278 grid-institutes:grid.83440.3b schema:alternateName Department of Genetics, Evolution and Environment, UCL Cancer Institute, University College London, Darwin Building, Gower Street, WC1E 6BT, London, UK
    279 schema:name Department of Genetics, Evolution and Environment, UCL Cancer Institute, University College London, Darwin Building, Gower Street, WC1E 6BT, London, UK
    280 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...