Molecular adaptations to cold in psychrophilic enzymes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-04

AUTHORS

G. Feller

ABSTRACT

Psychrophiles or cold-loving organisms successfully colonize cold environments of the Earth's biosphere. To cope with the reduction of chemical reaction rates induced by low temperatures, these organisms synthesize enzymes characterized by a high catalytic activity at low temperatures associated, however, with low thermal stability. Thanks to recent advances provided by X-ray crystallography, protein engineering and biophysical studies, we are beginning to understand the molecular adaptations responsible for these properties which appear to be relatively diverse. The emerging picture suggests that psychrophilic enzymes utilize an improved flexibility of the structures involved in the catalytic cycle, whereas other protein regions if not implicated in catalysis may or may not be subjected to genetic drift. More... »

PAGES

648-662

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00018-003-2155-3

DOI

http://dx.doi.org/10.1007/s00018-003-2155-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018486199

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12785714


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cold Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Mutational Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Directed Molecular Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Enzyme Stability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Enzymes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Drift", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hot Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recombinant Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Li\u00e8ge", 
          "id": "https://www.grid.ac/institutes/grid.4861.b", 
          "name": [
            "Laboratory of Biochemistry, Institute of Chemistry B6, University of Li\u00e8ge, 4000 Li\u00e8ge (Belgium), Fax +32 4 366 33 64, e-mail: gfeller@ulg.ac.be, BE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feller", 
        "givenName": "G.", 
        "id": "sg:person.01344507035.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344507035.02"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-04", 
    "datePublishedReg": "2003-04-01", 
    "description": "Psychrophiles or cold-loving organisms successfully colonize cold environments of the Earth's biosphere. To cope with the reduction of chemical reaction rates induced by low temperatures, these organisms synthesize enzymes characterized by a high catalytic activity at low temperatures associated, however, with low thermal stability. Thanks to recent advances provided by X-ray crystallography, protein engineering and biophysical studies, we are beginning to understand the molecular adaptations responsible for these properties which appear to be relatively diverse. The emerging picture suggests that psychrophilic enzymes utilize an improved flexibility of the structures involved in the catalytic cycle, whereas other protein regions if not implicated in catalysis may or may not be subjected to genetic drift.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00018-003-2155-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295005", 
        "issn": [
          "1420-682X", 
          "1420-9071"
        ], 
        "name": "Cellular and Molecular Life Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "name": "Molecular adaptations to cold in psychrophilic enzymes", 
    "pagination": "648-662", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "581491a63aaabacb8264ac28a9dcc23bbcf83719f3662533fd96188498f7e94e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12785714"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9705402"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00018-003-2155-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018486199"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00018-003-2155-3", 
      "https://app.dimensions.ai/details/publication/pub.1018486199"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000495.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00018-003-2155-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00018-003-2155-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00018-003-2155-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00018-003-2155-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00018-003-2155-3'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      20 PREDICATES      43 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00018-003-2155-3 schema:about N123376e113434ac98738ec7c9cee4f71
2 N124b90fd7da348d797bf1ce7f928b941
3 N1bbf2c8f267245c2ba0afea016018a37
4 N3452474e56654957966b4c56b7a89921
5 N467b2e12262045498b37c26b12354e38
6 N5adba9058e644706ba97291572475d1e
7 N69f11a40a13d45af9173a99ce5e4f072
8 N93b9f5a176014c2c88d8eb39df039dd5
9 N9d09cab712c749aea58e6d73bf373d58
10 Na659fe8ddb1c4688b2fe37c513037ad9
11 Nb0870cc7a4234d5bb0ebb15f71a61df3
12 Nbf3f847f2b1e43bab4fee6535760fd3a
13 Nc062883e2324475ca978359bb915011d
14 Nf56222d281a5457497980026ca3e355e
15 anzsrc-for:06
16 anzsrc-for:0601
17 schema:author Nd37f17865436493aa6c4d41a4a853086
18 schema:datePublished 2003-04
19 schema:datePublishedReg 2003-04-01
20 schema:description Psychrophiles or cold-loving organisms successfully colonize cold environments of the Earth's biosphere. To cope with the reduction of chemical reaction rates induced by low temperatures, these organisms synthesize enzymes characterized by a high catalytic activity at low temperatures associated, however, with low thermal stability. Thanks to recent advances provided by X-ray crystallography, protein engineering and biophysical studies, we are beginning to understand the molecular adaptations responsible for these properties which appear to be relatively diverse. The emerging picture suggests that psychrophilic enzymes utilize an improved flexibility of the structures involved in the catalytic cycle, whereas other protein regions if not implicated in catalysis may or may not be subjected to genetic drift.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf Nbd06d2ac4b134894999b677277bdc845
25 Ne03e18cab9ff4385bf423fd64f60840a
26 sg:journal.1295005
27 schema:name Molecular adaptations to cold in psychrophilic enzymes
28 schema:pagination 648-662
29 schema:productId N078b4179504b45f6b4fbabad392416ec
30 N2425fb080a654c98b610f53a732d5fb9
31 N2e6051b2acfa45a4818ae20fad2e7927
32 Na63628b21b654ff39f7512657f358ee5
33 Nb976fd8483ea407f91b081b916ddb27e
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018486199
35 https://doi.org/10.1007/s00018-003-2155-3
36 schema:sdDatePublished 2019-04-10T23:20
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Nd5538435ca444db2a2f9b2e48b279fd7
39 schema:url http://link.springer.com/10.1007/s00018-003-2155-3
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N078b4179504b45f6b4fbabad392416ec schema:name nlm_unique_id
44 schema:value 9705402
45 rdf:type schema:PropertyValue
46 N123376e113434ac98738ec7c9cee4f71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
47 schema:name Enzymes
48 rdf:type schema:DefinedTerm
49 N124b90fd7da348d797bf1ce7f928b941 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
50 schema:name Enzyme Stability
51 rdf:type schema:DefinedTerm
52 N1bbf2c8f267245c2ba0afea016018a37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Recombinant Proteins
54 rdf:type schema:DefinedTerm
55 N2425fb080a654c98b610f53a732d5fb9 schema:name doi
56 schema:value 10.1007/s00018-003-2155-3
57 rdf:type schema:PropertyValue
58 N2e6051b2acfa45a4818ae20fad2e7927 schema:name dimensions_id
59 schema:value pub.1018486199
60 rdf:type schema:PropertyValue
61 N3452474e56654957966b4c56b7a89921 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Hot Temperature
63 rdf:type schema:DefinedTerm
64 N467b2e12262045498b37c26b12354e38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Directed Molecular Evolution
66 rdf:type schema:DefinedTerm
67 N5adba9058e644706ba97291572475d1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Cold Temperature
69 rdf:type schema:DefinedTerm
70 N69f11a40a13d45af9173a99ce5e4f072 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Protein Conformation
72 rdf:type schema:DefinedTerm
73 N93b9f5a176014c2c88d8eb39df039dd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Genetic Drift
75 rdf:type schema:DefinedTerm
76 N9d09cab712c749aea58e6d73bf373d58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Bacterial Proteins
78 rdf:type schema:DefinedTerm
79 Na63628b21b654ff39f7512657f358ee5 schema:name readcube_id
80 schema:value 581491a63aaabacb8264ac28a9dcc23bbcf83719f3662533fd96188498f7e94e
81 rdf:type schema:PropertyValue
82 Na659fe8ddb1c4688b2fe37c513037ad9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Thermodynamics
84 rdf:type schema:DefinedTerm
85 Nb0870cc7a4234d5bb0ebb15f71a61df3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Kinetics
87 rdf:type schema:DefinedTerm
88 Nb976fd8483ea407f91b081b916ddb27e schema:name pubmed_id
89 schema:value 12785714
90 rdf:type schema:PropertyValue
91 Nbd06d2ac4b134894999b677277bdc845 schema:volumeNumber 60
92 rdf:type schema:PublicationVolume
93 Nbf3f847f2b1e43bab4fee6535760fd3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Evolution, Molecular
95 rdf:type schema:DefinedTerm
96 Nc062883e2324475ca978359bb915011d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name DNA Mutational Analysis
98 rdf:type schema:DefinedTerm
99 Nd37f17865436493aa6c4d41a4a853086 rdf:first sg:person.01344507035.02
100 rdf:rest rdf:nil
101 Nd5538435ca444db2a2f9b2e48b279fd7 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 Ne03e18cab9ff4385bf423fd64f60840a schema:issueNumber 4
104 rdf:type schema:PublicationIssue
105 Nf56222d281a5457497980026ca3e355e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Bacteria
107 rdf:type schema:DefinedTerm
108 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
109 schema:name Biological Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
112 schema:name Biochemistry and Cell Biology
113 rdf:type schema:DefinedTerm
114 sg:journal.1295005 schema:issn 1420-682X
115 1420-9071
116 schema:name Cellular and Molecular Life Sciences
117 rdf:type schema:Periodical
118 sg:person.01344507035.02 schema:affiliation https://www.grid.ac/institutes/grid.4861.b
119 schema:familyName Feller
120 schema:givenName G.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344507035.02
122 rdf:type schema:Person
123 https://www.grid.ac/institutes/grid.4861.b schema:alternateName University of Liège
124 schema:name Laboratory of Biochemistry, Institute of Chemistry B6, University of Liège, 4000 Liège (Belgium), Fax +32 4 366 33 64, e-mail: gfeller@ulg.ac.be, BE
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...