Asymptotic behaviour of Betti numbers of real algebraic surfaces View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-04

AUTHORS

F. Bihan

ABSTRACT

Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X_m$\end{document} be a nonsingular real algebraic surface of degree m in the complex projective space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb C}P^3$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb R}X_m$\end{document} its real point set in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb R}P^3$\end{document}. In the spirit of the sixteenth Hilbert's problem, one can ask for each degree m about the maximal possible value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta_{i,m}$\end{document} of the Betti number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b_i({\mathbb R}X_m)$\end{document} (i=0 or 1). We show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta_{i,m}$\end{document} is asymptotically equivalent to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l_i \cdot m^3$\end{document} for some real number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l_i$\end{document} and prove inequalities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{13}{36} \leq l_0 \leq \frac{5}{12}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{13}{18} \leq l_1 \leq \frac{5}{6}$\end{document}. More... »

PAGES

227-244

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s000140300010

DOI

http://dx.doi.org/10.1007/s000140300010

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032257404


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.9851.5", 
          "name": [
            "Universit\u00e9 de Lausanne, Facult\u00e9 des Sciences, Institut de Math\u00e9matiques (IMA), BCH, CH-1015 Lausanne, Switzerland, CH"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bihan", 
        "givenName": "F.", 
        "id": "sg:person.015065672741.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015065672741.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-04", 
    "datePublishedReg": "2003-04-01", 
    "description": "Let \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$X_m$\\end{document} be a nonsingular real algebraic surface of degree m in the complex projective space \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}${\\mathbb C}P^3$\\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}${\\mathbb R}X_m$\\end{document} its real point set in \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}${\\mathbb R}P^3$\\end{document}. In the spirit of the sixteenth Hilbert's problem, one can ask for each degree m about the maximal possible value \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\beta_{i,m}$\\end{document} of the Betti number \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$b_i({\\mathbb R}X_m)$\\end{document} (i=0 or 1). We show that \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\beta_{i,m}$\\end{document} is asymptotically equivalent to \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$l_i \\cdot m^3$\\end{document} for some real number \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$l_i$\\end{document} and prove inequalities \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\frac{13}{36} \\leq l_0 \\leq \\frac{5}{12}$\\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\frac{13}{18} \\leq l_1 \\leq \\frac{5}{6}$\\end{document}.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s000140300010", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1137505", 
        "issn": [
          "0010-2571", 
          "1420-8946"
        ], 
        "name": "Commentarii Mathematici Helvetici", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "78"
      }
    ], 
    "name": "Asymptotic behaviour of Betti numbers of real algebraic surfaces", 
    "pagination": "227-244", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "99ab23eb6042aa9c97bf2915f3c89e65cd8bb05e6a8cf86a590d6adbcf616416"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s000140300010"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032257404"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s000140300010", 
      "https://app.dimensions.ai/details/publication/pub.1032257404"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000495.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s000140300010"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s000140300010'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s000140300010'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s000140300010'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s000140300010'


 

This table displays all metadata directly associated to this object as RDF triples.

61 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s000140300010 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author Nf2baadc7e30e415dbce050fe3c554dec
4 schema:datePublished 2003-04
5 schema:datePublishedReg 2003-04-01
6 schema:description Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X_m$\end{document} be a nonsingular real algebraic surface of degree m in the complex projective space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb C}P^3$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb R}X_m$\end{document} its real point set in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb R}P^3$\end{document}. In the spirit of the sixteenth Hilbert's problem, one can ask for each degree m about the maximal possible value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta_{i,m}$\end{document} of the Betti number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b_i({\mathbb R}X_m)$\end{document} (i=0 or 1). We show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta_{i,m}$\end{document} is asymptotically equivalent to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l_i \cdot m^3$\end{document} for some real number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l_i$\end{document} and prove inequalities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{13}{36} \leq l_0 \leq \frac{5}{12}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{13}{18} \leq l_1 \leq \frac{5}{6}$\end{document}.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N07a4ac86b59f43a6ad4950e3816b944c
11 N6ea29b4cc9b948e1847999290ff8675a
12 sg:journal.1137505
13 schema:name Asymptotic behaviour of Betti numbers of real algebraic surfaces
14 schema:pagination 227-244
15 schema:productId N9c889aef6369414e89bd72e41018ee3a
16 Na23f743e57ab4eda84f3583e130c2fa9
17 Ne2a17f9d90f84237968c6d808d08ac10
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032257404
19 https://doi.org/10.1007/s000140300010
20 schema:sdDatePublished 2019-04-10T15:48
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N1290e4d3ef6f489c8606d2a992c22bb0
23 schema:url http://link.springer.com/10.1007/s000140300010
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N07a4ac86b59f43a6ad4950e3816b944c schema:volumeNumber 78
28 rdf:type schema:PublicationVolume
29 N1290e4d3ef6f489c8606d2a992c22bb0 schema:name Springer Nature - SN SciGraph project
30 rdf:type schema:Organization
31 N6ea29b4cc9b948e1847999290ff8675a schema:issueNumber 2
32 rdf:type schema:PublicationIssue
33 N9c889aef6369414e89bd72e41018ee3a schema:name dimensions_id
34 schema:value pub.1032257404
35 rdf:type schema:PropertyValue
36 Na23f743e57ab4eda84f3583e130c2fa9 schema:name doi
37 schema:value 10.1007/s000140300010
38 rdf:type schema:PropertyValue
39 Ne2a17f9d90f84237968c6d808d08ac10 schema:name readcube_id
40 schema:value 99ab23eb6042aa9c97bf2915f3c89e65cd8bb05e6a8cf86a590d6adbcf616416
41 rdf:type schema:PropertyValue
42 Nf2baadc7e30e415dbce050fe3c554dec rdf:first sg:person.015065672741.77
43 rdf:rest rdf:nil
44 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
45 schema:name Medical and Health Sciences
46 rdf:type schema:DefinedTerm
47 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
48 schema:name Public Health and Health Services
49 rdf:type schema:DefinedTerm
50 sg:journal.1137505 schema:issn 0010-2571
51 1420-8946
52 schema:name Commentarii Mathematici Helvetici
53 rdf:type schema:Periodical
54 sg:person.015065672741.77 schema:affiliation https://www.grid.ac/institutes/grid.9851.5
55 schema:familyName Bihan
56 schema:givenName F.
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015065672741.77
58 rdf:type schema:Person
59 https://www.grid.ac/institutes/grid.9851.5 schema:alternateName University of Lausanne
60 schema:name Université de Lausanne, Faculté des Sciences, Institut de Mathématiques (IMA), BCH, CH-1015 Lausanne, Switzerland, CH
61 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...