On the structure of generalized Hamiltonian groups View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-11

AUTHORS

L.-C. Kappe, D.M. Reboli

ABSTRACT

We consider the characteristic subgroup CS(G), generated by the nonnormal cyclic subgroups of the group G. A group G is called a generalized Dedekind group if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $CS(G)\neq G$\end{document}, and those among them with nontrivial CS(G) are called generalized Hamiltonian groups. Such groups are torsion groups of nilpotency class two. The commutator subgroup is cyclic of p-power or two times p-power order and always contained in CS(G). The quotient G/CS(G) is a locally cyclic p-group. We give an example of an infinite generalized Hamiltonian p-group with G/CS(G) locally cyclic. More... »

PAGES

328-337

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s000130050511

DOI

http://dx.doi.org/10.1007/s000130050511

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012062451


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Binghamton University", 
          "id": "https://www.grid.ac/institutes/grid.264260.4", 
          "name": [
            "Department of Mathematical Sciences, SUNY at Binghamton, Binghamton, NY 13902-6000, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kappe", 
        "givenName": "L.-C.", 
        "id": "sg:person.016274627611.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016274627611.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College", 
          "id": "https://www.grid.ac/institutes/grid.419785.6", 
          "name": [
            "Department of Mathematics, King's College, Wilkes-Barre, PA 18711, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reboli", 
        "givenName": "D.M.", 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-11", 
    "datePublishedReg": "2000-11-01", 
    "description": "We consider the characteristic subgroup CS(G), generated by the nonnormal cyclic subgroups of the group G. A group G is called a generalized Dedekind group if \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $CS(G)\\neq G$\\end{document}, and those among them with nontrivial CS(G) are called generalized Hamiltonian groups. Such groups are torsion groups of nilpotency class two. The commutator subgroup is cyclic of p-power or two times p-power order and always contained in CS(G). The quotient G/CS(G) is a locally cyclic p-group. We give an example of an infinite generalized Hamiltonian p-group with G/CS(G) locally cyclic.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s000130050511", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052783", 
        "issn": [
          "0003-889X", 
          "1420-8938"
        ], 
        "name": "Archiv der Mathematik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "75"
      }
    ], 
    "name": "On the structure of generalized Hamiltonian groups", 
    "pagination": "328-337", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3978ae3ebafa99bc8b99376909dbb0fe365a3298610393d8cf0817182f838c8b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s000130050511"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012062451"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s000130050511", 
      "https://app.dimensions.ai/details/publication/pub.1012062451"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s000130050511"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s000130050511'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s000130050511'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s000130050511'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s000130050511'


 

This table displays all metadata directly associated to this object as RDF triples.

70 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s000130050511 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6e2b42a924cc4f859b2e252c6773c304
4 schema:datePublished 2000-11
5 schema:datePublishedReg 2000-11-01
6 schema:description We consider the characteristic subgroup CS(G), generated by the nonnormal cyclic subgroups of the group G. A group G is called a generalized Dedekind group if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $CS(G)\neq G$\end{document}, and those among them with nontrivial CS(G) are called generalized Hamiltonian groups. Such groups are torsion groups of nilpotency class two. The commutator subgroup is cyclic of p-power or two times p-power order and always contained in CS(G). The quotient G/CS(G) is a locally cyclic p-group. We give an example of an infinite generalized Hamiltonian p-group with G/CS(G) locally cyclic.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N7e1b57e6ae2748ce83a15dffdddd4152
11 Nbff3ca02e3df4a37bbe25633e4c15d74
12 sg:journal.1052783
13 schema:name On the structure of generalized Hamiltonian groups
14 schema:pagination 328-337
15 schema:productId N11b17667d7c843e19b58af4cbb40eaa6
16 N3298c51ee1ab4c9da7b35e12e54f447f
17 Nedcaffe7f0ae4347a026775099f6f82e
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012062451
19 https://doi.org/10.1007/s000130050511
20 schema:sdDatePublished 2019-04-10T18:16
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N48533e83203e4b84885ac9e2dc531f78
23 schema:url http://link.springer.com/10.1007/s000130050511
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N11b17667d7c843e19b58af4cbb40eaa6 schema:name readcube_id
28 schema:value 3978ae3ebafa99bc8b99376909dbb0fe365a3298610393d8cf0817182f838c8b
29 rdf:type schema:PropertyValue
30 N3298c51ee1ab4c9da7b35e12e54f447f schema:name dimensions_id
31 schema:value pub.1012062451
32 rdf:type schema:PropertyValue
33 N3840a8f159d344a98828211f7f035ca8 schema:affiliation https://www.grid.ac/institutes/grid.419785.6
34 schema:familyName Reboli
35 schema:givenName D.M.
36 rdf:type schema:Person
37 N48533e83203e4b84885ac9e2dc531f78 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N6e2b42a924cc4f859b2e252c6773c304 rdf:first sg:person.016274627611.62
40 rdf:rest Ne5ff021382264825b0f189dd090573db
41 N7e1b57e6ae2748ce83a15dffdddd4152 schema:volumeNumber 75
42 rdf:type schema:PublicationVolume
43 Nbff3ca02e3df4a37bbe25633e4c15d74 schema:issueNumber 5
44 rdf:type schema:PublicationIssue
45 Ne5ff021382264825b0f189dd090573db rdf:first N3840a8f159d344a98828211f7f035ca8
46 rdf:rest rdf:nil
47 Nedcaffe7f0ae4347a026775099f6f82e schema:name doi
48 schema:value 10.1007/s000130050511
49 rdf:type schema:PropertyValue
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1052783 schema:issn 0003-889X
57 1420-8938
58 schema:name Archiv der Mathematik
59 rdf:type schema:Periodical
60 sg:person.016274627611.62 schema:affiliation https://www.grid.ac/institutes/grid.264260.4
61 schema:familyName Kappe
62 schema:givenName L.-C.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016274627611.62
64 rdf:type schema:Person
65 https://www.grid.ac/institutes/grid.264260.4 schema:alternateName Binghamton University
66 schema:name Department of Mathematical Sciences, SUNY at Binghamton, Binghamton, NY 13902-6000, USA, US
67 rdf:type schema:Organization
68 https://www.grid.ac/institutes/grid.419785.6 schema:alternateName King's College
69 schema:name Department of Mathematics, King's College, Wilkes-Barre, PA 18711, USA, US
70 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...