On the structure of generalized Hamiltonian groups View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-11

AUTHORS

L.-C. Kappe, D.M. Reboli

ABSTRACT

We consider the characteristic subgroup CS(G), generated by the nonnormal cyclic subgroups of the group G. A group G is called a generalized Dedekind group if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $CS(G)\neq G$\end{document}, and those among them with nontrivial CS(G) are called generalized Hamiltonian groups. Such groups are torsion groups of nilpotency class two. The commutator subgroup is cyclic of p-power or two times p-power order and always contained in CS(G). The quotient G/CS(G) is a locally cyclic p-group. We give an example of an infinite generalized Hamiltonian p-group with G/CS(G) locally cyclic. More... »

PAGES

328-337

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s000130050511

DOI

http://dx.doi.org/10.1007/s000130050511

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012062451


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Binghamton University", 
          "id": "https://www.grid.ac/institutes/grid.264260.4", 
          "name": [
            "Department of Mathematical Sciences, SUNY at Binghamton, Binghamton, NY 13902-6000, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kappe", 
        "givenName": "L.-C.", 
        "id": "sg:person.016274627611.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016274627611.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College", 
          "id": "https://www.grid.ac/institutes/grid.419785.6", 
          "name": [
            "Department of Mathematics, King's College, Wilkes-Barre, PA 18711, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reboli", 
        "givenName": "D.M.", 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-11", 
    "datePublishedReg": "2000-11-01", 
    "description": "We consider the characteristic subgroup CS(G), generated by the nonnormal cyclic subgroups of the group G. A group G is called a generalized Dedekind group if \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $CS(G)\\neq G$\\end{document}, and those among them with nontrivial CS(G) are called generalized Hamiltonian groups. Such groups are torsion groups of nilpotency class two. The commutator subgroup is cyclic of p-power or two times p-power order and always contained in CS(G). The quotient G/CS(G) is a locally cyclic p-group. We give an example of an infinite generalized Hamiltonian p-group with G/CS(G) locally cyclic.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s000130050511", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052783", 
        "issn": [
          "0003-889X", 
          "1420-8938"
        ], 
        "name": "Archiv der Mathematik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "75"
      }
    ], 
    "name": "On the structure of generalized Hamiltonian groups", 
    "pagination": "328-337", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3978ae3ebafa99bc8b99376909dbb0fe365a3298610393d8cf0817182f838c8b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s000130050511"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012062451"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s000130050511", 
      "https://app.dimensions.ai/details/publication/pub.1012062451"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s000130050511"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s000130050511'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s000130050511'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s000130050511'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s000130050511'


 

This table displays all metadata directly associated to this object as RDF triples.

70 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s000130050511 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N55a3637e23594c8ea90df6ada6db510f
4 schema:datePublished 2000-11
5 schema:datePublishedReg 2000-11-01
6 schema:description We consider the characteristic subgroup CS(G), generated by the nonnormal cyclic subgroups of the group G. A group G is called a generalized Dedekind group if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $CS(G)\neq G$\end{document}, and those among them with nontrivial CS(G) are called generalized Hamiltonian groups. Such groups are torsion groups of nilpotency class two. The commutator subgroup is cyclic of p-power or two times p-power order and always contained in CS(G). The quotient G/CS(G) is a locally cyclic p-group. We give an example of an infinite generalized Hamiltonian p-group with G/CS(G) locally cyclic.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N4a310c11328a4f94a40a6cf1fca1936f
11 Ne0a66b43c0ae4f2cbade03849f4e7081
12 sg:journal.1052783
13 schema:name On the structure of generalized Hamiltonian groups
14 schema:pagination 328-337
15 schema:productId N12703a2797df40dd9312443c3fcc47ae
16 N3624f7f38dd741e39ce07601b342972e
17 N75222b28c5b14510b5cc526e0775709d
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012062451
19 https://doi.org/10.1007/s000130050511
20 schema:sdDatePublished 2019-04-10T18:16
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Na8b9c8f3f92641a1a52a1b9a81c7b58b
23 schema:url http://link.springer.com/10.1007/s000130050511
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N12703a2797df40dd9312443c3fcc47ae schema:name dimensions_id
28 schema:value pub.1012062451
29 rdf:type schema:PropertyValue
30 N1cb3b23cbdf84ad8b3406fe375a0c68c rdf:first Nd9f8bb623d114991a1c3bcffe3651027
31 rdf:rest rdf:nil
32 N3624f7f38dd741e39ce07601b342972e schema:name readcube_id
33 schema:value 3978ae3ebafa99bc8b99376909dbb0fe365a3298610393d8cf0817182f838c8b
34 rdf:type schema:PropertyValue
35 N4a310c11328a4f94a40a6cf1fca1936f schema:issueNumber 5
36 rdf:type schema:PublicationIssue
37 N55a3637e23594c8ea90df6ada6db510f rdf:first sg:person.016274627611.62
38 rdf:rest N1cb3b23cbdf84ad8b3406fe375a0c68c
39 N75222b28c5b14510b5cc526e0775709d schema:name doi
40 schema:value 10.1007/s000130050511
41 rdf:type schema:PropertyValue
42 Na8b9c8f3f92641a1a52a1b9a81c7b58b schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 Nd9f8bb623d114991a1c3bcffe3651027 schema:affiliation https://www.grid.ac/institutes/grid.419785.6
45 schema:familyName Reboli
46 schema:givenName D.M.
47 rdf:type schema:Person
48 Ne0a66b43c0ae4f2cbade03849f4e7081 schema:volumeNumber 75
49 rdf:type schema:PublicationVolume
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1052783 schema:issn 0003-889X
57 1420-8938
58 schema:name Archiv der Mathematik
59 rdf:type schema:Periodical
60 sg:person.016274627611.62 schema:affiliation https://www.grid.ac/institutes/grid.264260.4
61 schema:familyName Kappe
62 schema:givenName L.-C.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016274627611.62
64 rdf:type schema:Person
65 https://www.grid.ac/institutes/grid.264260.4 schema:alternateName Binghamton University
66 schema:name Department of Mathematical Sciences, SUNY at Binghamton, Binghamton, NY 13902-6000, USA, US
67 rdf:type schema:Organization
68 https://www.grid.ac/institutes/grid.419785.6 schema:alternateName King's College
69 schema:name Department of Mathematics, King's College, Wilkes-Barre, PA 18711, USA, US
70 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...