Ontology type: schema:ScholarlyArticle
2021-11-23
AUTHORSAlexei Karlovich, Eugene Shargorodsky
ABSTRACT
Let ‖A‖e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert A\Vert _{\mathrm {e}}$$\end{document} be the essential norm of an operator A and ‖A‖m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert A\Vert _m$$\end{document} be the infimum of the norms of restrictions of A to the subspaces of finite codimension. We show that if ‖A‖e
73-77
http://scigraph.springernature.com/pub.10.1007/s00013-021-01679-w
DOIhttp://dx.doi.org/10.1007/s00013-021-01679-w
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1142917562
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Centro de Matem\u00e1tica e Aplica\u00e7\u00f5es, Departamento de Matem\u00e1tica, Faculdade de Ci\u00eancias e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829\u2013516, Caparica, Portugal",
"id": "http://www.grid.ac/institutes/grid.10772.33",
"name": [
"Centro de Matem\u00e1tica e Aplica\u00e7\u00f5es, Departamento de Matem\u00e1tica, Faculdade de Ci\u00eancias e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829\u2013516, Caparica, Portugal"
],
"type": "Organization"
},
"familyName": "Karlovich",
"givenName": "Alexei",
"id": "sg:person.015715150271.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015715150271.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Fakult\u00e4t Mathematik, Technische Universit\u00e4t Dresden, 01062, Dresden, Germany",
"id": "http://www.grid.ac/institutes/grid.4488.0",
"name": [
"Department of Mathematics, King\u2019s College London, WC2R 2LS, Strand, London, UK",
"Fakult\u00e4t Mathematik, Technische Universit\u00e4t Dresden, 01062, Dresden, Germany"
],
"type": "Organization"
},
"familyName": "Shargorodsky",
"givenName": "Eugene",
"id": "sg:person.014120361136.75",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120361136.75"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-0348-5727-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000028909",
"https://doi.org/10.1007/978-3-0348-5727-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02761641",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038701601",
"https://doi.org/10.1007/bf02761641"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-35347-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022611016",
"https://doi.org/10.1007/978-3-662-35347-9"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-11-23",
"datePublishedReg": "2021-11-23",
"description": "Let \u2016A\u2016e\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Vert A\\Vert _{\\mathrm {e}}$$\\end{document} be the essential norm of an operator A and \u2016A\u2016m\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Vert A\\Vert _m$$\\end{document} be the infimum of the norms of restrictions of A to the subspaces of finite codimension. We show that if \u2016A\u2016e
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01679-w'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01679-w'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01679-w'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01679-w'
This table displays all metadata directly associated to this object as RDF triples.
105 TRIPLES
22 PREDICATES
50 URIs
39 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00013-021-01679-w | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | N51bb678352c14c3b990d0daa8b6c0048 |
4 | ″ | schema:citation | sg:pub.10.1007/978-3-0348-5727-7 |
5 | ″ | ″ | sg:pub.10.1007/978-3-662-35347-9 |
6 | ″ | ″ | sg:pub.10.1007/bf02761641 |
7 | ″ | schema:datePublished | 2021-11-23 |
8 | ″ | schema:datePublishedReg | 2021-11-23 |
9 | ″ | schema:description | Let ‖A‖e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert A\Vert _{\mathrm {e}}$$\end{document} be the essential norm of an operator A and ‖A‖m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert A\Vert _m$$\end{document} be the infimum of the norms of restrictions of A to the subspaces of finite codimension. We show that if ‖A‖e<M‖A‖m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert A\Vert _{\mathrm {e}}<M\Vert A\Vert _m$$\end{document} holds for every bounded noncompact operator A from a Banach space X to every Banach space Y, then the space X has the dual compact approximation property. This is an analogue of a result by Astala and Tylli (J Funct Anal 70(2):388–401, 1987) concerning the Hausdorff measure of noncompactness and the bounded compact approximation property. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N200c7a25ad2d418b96f52ca75779ee1d |
14 | ″ | ″ | Nf30b1cd976ef4f0f968504873033cfee |
15 | ″ | ″ | sg:journal.1052783 |
16 | ″ | schema:keywords | Astala |
17 | ″ | ″ | Banach space X |
18 | ″ | ″ | Banach space Y |
19 | ″ | ″ | Hausdorff measure |
20 | ″ | ″ | analogues |
21 | ″ | ″ | approximation properties |
22 | ″ | ″ | codimension |
23 | ″ | ″ | compact approximation property |
24 | ″ | ″ | essential norm |
25 | ″ | ″ | finite codimension |
26 | ″ | ″ | infimum |
27 | ″ | ″ | measures |
28 | ″ | ″ | noncompactness |
29 | ″ | ″ | norms |
30 | ″ | ″ | operator A |
31 | ″ | ″ | properties |
32 | ″ | ″ | restriction |
33 | ″ | ″ | results |
34 | ″ | ″ | space X |
35 | ″ | ″ | space Y |
36 | ″ | ″ | subspace |
37 | ″ | ″ | theorem |
38 | ″ | schema:name | On an analogue of a theorem by Astala and Tylli |
39 | ″ | schema:pagination | 73-77 |
40 | ″ | schema:productId | N597ee791ddde42dc999476649577cec5 |
41 | ″ | ″ | N5abc1d38125f48df8ba33427e232f3a4 |
42 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1142917562 |
43 | ″ | ″ | https://doi.org/10.1007/s00013-021-01679-w |
44 | ″ | schema:sdDatePublished | 2022-05-20T07:38 |
45 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
46 | ″ | schema:sdPublisher | N511b9c93947f4026b5d79622f0ec659d |
47 | ″ | schema:url | https://doi.org/10.1007/s00013-021-01679-w |
48 | ″ | sgo:license | sg:explorer/license/ |
49 | ″ | sgo:sdDataset | articles |
50 | ″ | rdf:type | schema:ScholarlyArticle |
51 | N200c7a25ad2d418b96f52ca75779ee1d | schema:issueNumber | 1 |
52 | ″ | rdf:type | schema:PublicationIssue |
53 | N511b9c93947f4026b5d79622f0ec659d | schema:name | Springer Nature - SN SciGraph project |
54 | ″ | rdf:type | schema:Organization |
55 | N51bb678352c14c3b990d0daa8b6c0048 | rdf:first | sg:person.015715150271.48 |
56 | ″ | rdf:rest | N57381263e2e24b4cbff3f8c352be3d3c |
57 | N57381263e2e24b4cbff3f8c352be3d3c | rdf:first | sg:person.014120361136.75 |
58 | ″ | rdf:rest | rdf:nil |
59 | N597ee791ddde42dc999476649577cec5 | schema:name | dimensions_id |
60 | ″ | schema:value | pub.1142917562 |
61 | ″ | rdf:type | schema:PropertyValue |
62 | N5abc1d38125f48df8ba33427e232f3a4 | schema:name | doi |
63 | ″ | schema:value | 10.1007/s00013-021-01679-w |
64 | ″ | rdf:type | schema:PropertyValue |
65 | Nf30b1cd976ef4f0f968504873033cfee | schema:volumeNumber | 118 |
66 | ″ | rdf:type | schema:PublicationVolume |
67 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
68 | ″ | schema:name | Mathematical Sciences |
69 | ″ | rdf:type | schema:DefinedTerm |
70 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
71 | ″ | schema:name | Pure Mathematics |
72 | ″ | rdf:type | schema:DefinedTerm |
73 | sg:grant.9756882 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s00013-021-01679-w |
74 | ″ | rdf:type | schema:MonetaryGrant |
75 | sg:journal.1052783 | schema:issn | 0003-889X |
76 | ″ | ″ | 1420-8938 |
77 | ″ | schema:name | Archiv der Mathematik |
78 | ″ | schema:publisher | Springer Nature |
79 | ″ | rdf:type | schema:Periodical |
80 | sg:person.014120361136.75 | schema:affiliation | grid-institutes:grid.4488.0 |
81 | ″ | schema:familyName | Shargorodsky |
82 | ″ | schema:givenName | Eugene |
83 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120361136.75 |
84 | ″ | rdf:type | schema:Person |
85 | sg:person.015715150271.48 | schema:affiliation | grid-institutes:grid.10772.33 |
86 | ″ | schema:familyName | Karlovich |
87 | ″ | schema:givenName | Alexei |
88 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015715150271.48 |
89 | ″ | rdf:type | schema:Person |
90 | sg:pub.10.1007/978-3-0348-5727-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000028909 |
91 | ″ | ″ | https://doi.org/10.1007/978-3-0348-5727-7 |
92 | ″ | rdf:type | schema:CreativeWork |
93 | sg:pub.10.1007/978-3-662-35347-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1022611016 |
94 | ″ | ″ | https://doi.org/10.1007/978-3-662-35347-9 |
95 | ″ | rdf:type | schema:CreativeWork |
96 | sg:pub.10.1007/bf02761641 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038701601 |
97 | ″ | ″ | https://doi.org/10.1007/bf02761641 |
98 | ″ | rdf:type | schema:CreativeWork |
99 | grid-institutes:grid.10772.33 | schema:alternateName | Centro de Matemática e Aplicações, Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829–516, Caparica, Portugal |
100 | ″ | schema:name | Centro de Matemática e Aplicações, Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829–516, Caparica, Portugal |
101 | ″ | rdf:type | schema:Organization |
102 | grid-institutes:grid.4488.0 | schema:alternateName | Fakultät Mathematik, Technische Universität Dresden, 01062, Dresden, Germany |
103 | ″ | schema:name | Department of Mathematics, King’s College London, WC2R 2LS, Strand, London, UK |
104 | ″ | ″ | Fakultät Mathematik, Technische Universität Dresden, 01062, Dresden, Germany |
105 | ″ | rdf:type | schema:Organization |