On an analogue of a theorem by Astala and Tylli View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-11-23

AUTHORS

Alexei Karlovich, Eugene Shargorodsky

ABSTRACT

Let ‖A‖e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert A\Vert _{\mathrm {e}}$$\end{document} be the essential norm of an operator A and ‖A‖m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert A\Vert _m$$\end{document} be the infimum of the norms of restrictions of A to the subspaces of finite codimension. We show that if ‖A‖e More... »

PAGES

73-77

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00013-021-01679-w

DOI

http://dx.doi.org/10.1007/s00013-021-01679-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142917562


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centro de Matem\u00e1tica e Aplica\u00e7\u00f5es, Departamento de Matem\u00e1tica, Faculdade de Ci\u00eancias e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829\u2013516, Caparica, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.10772.33", 
          "name": [
            "Centro de Matem\u00e1tica e Aplica\u00e7\u00f5es, Departamento de Matem\u00e1tica, Faculdade de Ci\u00eancias e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829\u2013516, Caparica, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karlovich", 
        "givenName": "Alexei", 
        "id": "sg:person.015715150271.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015715150271.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fakult\u00e4t Mathematik, Technische Universit\u00e4t Dresden, 01062, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4488.0", 
          "name": [
            "Department of Mathematics, King\u2019s College London, WC2R 2LS, Strand, London, UK", 
            "Fakult\u00e4t Mathematik, Technische Universit\u00e4t Dresden, 01062, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shargorodsky", 
        "givenName": "Eugene", 
        "id": "sg:person.014120361136.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120361136.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-0348-5727-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000028909", 
          "https://doi.org/10.1007/978-3-0348-5727-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02761641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038701601", 
          "https://doi.org/10.1007/bf02761641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-35347-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022611016", 
          "https://doi.org/10.1007/978-3-662-35347-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-23", 
    "datePublishedReg": "2021-11-23", 
    "description": "Let \u2016A\u2016e\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Vert A\\Vert _{\\mathrm {e}}$$\\end{document} be the essential norm of an operator A and \u2016A\u2016m\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Vert A\\Vert _m$$\\end{document} be the infimum of the norms of restrictions of A to the subspaces of finite codimension. We show that if \u2016A\u2016e
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01679-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01679-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01679-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01679-w'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      22 PREDICATES      50 URIs      39 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00013-021-01679-w schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N51bb678352c14c3b990d0daa8b6c0048
4 schema:citation sg:pub.10.1007/978-3-0348-5727-7
5 sg:pub.10.1007/978-3-662-35347-9
6 sg:pub.10.1007/bf02761641
7 schema:datePublished 2021-11-23
8 schema:datePublishedReg 2021-11-23
9 schema:description Let ‖A‖e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert A\Vert _{\mathrm {e}}$$\end{document} be the essential norm of an operator A and ‖A‖m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert A\Vert _m$$\end{document} be the infimum of the norms of restrictions of A to the subspaces of finite codimension. We show that if ‖A‖e<M‖A‖m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert A\Vert _{\mathrm {e}}<M\Vert A\Vert _m$$\end{document} holds for every bounded noncompact operator A from a Banach space X to every Banach space Y, then the space X has the dual compact approximation property. This is an analogue of a result by Astala and Tylli (J Funct Anal 70(2):388–401, 1987) concerning the Hausdorff measure of noncompactness and the bounded compact approximation property.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N200c7a25ad2d418b96f52ca75779ee1d
14 Nf30b1cd976ef4f0f968504873033cfee
15 sg:journal.1052783
16 schema:keywords Astala
17 Banach space X
18 Banach space Y
19 Hausdorff measure
20 analogues
21 approximation properties
22 codimension
23 compact approximation property
24 essential norm
25 finite codimension
26 infimum
27 measures
28 noncompactness
29 norms
30 operator A
31 properties
32 restriction
33 results
34 space X
35 space Y
36 subspace
37 theorem
38 schema:name On an analogue of a theorem by Astala and Tylli
39 schema:pagination 73-77
40 schema:productId N597ee791ddde42dc999476649577cec5
41 N5abc1d38125f48df8ba33427e232f3a4
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142917562
43 https://doi.org/10.1007/s00013-021-01679-w
44 schema:sdDatePublished 2022-05-20T07:38
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N511b9c93947f4026b5d79622f0ec659d
47 schema:url https://doi.org/10.1007/s00013-021-01679-w
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N200c7a25ad2d418b96f52ca75779ee1d schema:issueNumber 1
52 rdf:type schema:PublicationIssue
53 N511b9c93947f4026b5d79622f0ec659d schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N51bb678352c14c3b990d0daa8b6c0048 rdf:first sg:person.015715150271.48
56 rdf:rest N57381263e2e24b4cbff3f8c352be3d3c
57 N57381263e2e24b4cbff3f8c352be3d3c rdf:first sg:person.014120361136.75
58 rdf:rest rdf:nil
59 N597ee791ddde42dc999476649577cec5 schema:name dimensions_id
60 schema:value pub.1142917562
61 rdf:type schema:PropertyValue
62 N5abc1d38125f48df8ba33427e232f3a4 schema:name doi
63 schema:value 10.1007/s00013-021-01679-w
64 rdf:type schema:PropertyValue
65 Nf30b1cd976ef4f0f968504873033cfee schema:volumeNumber 118
66 rdf:type schema:PublicationVolume
67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
68 schema:name Mathematical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
71 schema:name Pure Mathematics
72 rdf:type schema:DefinedTerm
73 sg:grant.9756882 http://pending.schema.org/fundedItem sg:pub.10.1007/s00013-021-01679-w
74 rdf:type schema:MonetaryGrant
75 sg:journal.1052783 schema:issn 0003-889X
76 1420-8938
77 schema:name Archiv der Mathematik
78 schema:publisher Springer Nature
79 rdf:type schema:Periodical
80 sg:person.014120361136.75 schema:affiliation grid-institutes:grid.4488.0
81 schema:familyName Shargorodsky
82 schema:givenName Eugene
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120361136.75
84 rdf:type schema:Person
85 sg:person.015715150271.48 schema:affiliation grid-institutes:grid.10772.33
86 schema:familyName Karlovich
87 schema:givenName Alexei
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015715150271.48
89 rdf:type schema:Person
90 sg:pub.10.1007/978-3-0348-5727-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000028909
91 https://doi.org/10.1007/978-3-0348-5727-7
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/978-3-662-35347-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022611016
94 https://doi.org/10.1007/978-3-662-35347-9
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf02761641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038701601
97 https://doi.org/10.1007/bf02761641
98 rdf:type schema:CreativeWork
99 grid-institutes:grid.10772.33 schema:alternateName Centro de Matemática e Aplicações, Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829–516, Caparica, Portugal
100 schema:name Centro de Matemática e Aplicações, Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829–516, Caparica, Portugal
101 rdf:type schema:Organization
102 grid-institutes:grid.4488.0 schema:alternateName Fakultät Mathematik, Technische Universität Dresden, 01062, Dresden, Germany
103 schema:name Department of Mathematics, King’s College London, WC2R 2LS, Strand, London, UK
104 Fakultät Mathematik, Technische Universität Dresden, 01062, Dresden, Germany
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...