Ontology type: schema:ScholarlyArticle Open Access: True
2021-10-27
AUTHORSDaniel Pellegrino, Janiely Silva
ABSTRACTIn 1947, M.S. Macphail constructed a series in ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}$$\end{document} that converges unconditionally but does not converge absolutely. According to the literature, this result helped Dvoretzky and Rogers to finally answer a long standing problem of Banach space theory, by showing that in all infinite-dimensional Banach spaces, there exists an unconditionally summable sequence that fails to be absolutely summable. More precisely, the Dvoretzky–Rogers theorem asserts that in every infinite-dimensional Banach space E, there exists an unconditionally convergent series ∑xj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum x^{\left( j\right) }$$\end{document} such that ∑‖x(j)‖2-ε=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum \Vert x^{(j)}\Vert ^{2-\varepsilon }=\infty $$\end{document} for all ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document}. Their proof is non-constructive and Macphail’s result for E=ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E=\ell _{1}$$\end{document} provides a constructive proof just for ε≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \ge 1$$\end{document}. In this note, we revisit Macphail’s paper and present two alternative constructions that work for all ε>0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0.$$\end{document} More... »
PAGES647-656
http://scigraph.springernature.com/pub.10.1007/s00013-021-01676-z
DOIhttp://dx.doi.org/10.1007/s00013-021-01676-z
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1142222643
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Departamento de Matem\u00e1tica, Universidade Federal da Para\u00edba, 58.051-900, Jo\u00e3o Pessoa, Brazil",
"id": "http://www.grid.ac/institutes/grid.411216.1",
"name": [
"Departamento de Matem\u00e1tica, Universidade Federal da Para\u00edba, 58.051-900, Jo\u00e3o Pessoa, Brazil"
],
"type": "Organization"
},
"familyName": "Pellegrino",
"givenName": "Daniel",
"id": "sg:person.011053537101.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011053537101.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Departamento de Matem\u00e1tica, Universidade Federal da Para\u00edba, 58.051-900, Jo\u00e3o Pessoa, Brazil",
"id": "http://www.grid.ac/institutes/grid.411216.1",
"name": [
"Departamento de Matem\u00e1tica, Universidade Federal da Para\u00edba, 58.051-900, Jo\u00e3o Pessoa, Brazil"
],
"type": "Organization"
},
"familyName": "Silva",
"givenName": "Janiely",
"id": "sg:person.013717465245.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013717465245.64"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02759741",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041936754",
"https://doi.org/10.1007/bf02759741"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s13348-019-00261-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1120900086",
"https://doi.org/10.1007/s13348-019-00261-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02760261",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014098056",
"https://doi.org/10.1007/bf02760261"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00574-019-00140-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1113263181",
"https://doi.org/10.1007/s00574-019-00140-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10958-014-1912-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040732065",
"https://doi.org/10.1007/s10958-014-1912-1"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-10-27",
"datePublishedReg": "2021-10-27",
"description": "In 1947, M.S. Macphail constructed a series in \u21131\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\ell _{1}$$\\end{document} that converges unconditionally but does not converge absolutely. According to the literature, this result helped Dvoretzky and Rogers to finally answer a long standing problem of Banach space theory, by showing that in all infinite-dimensional Banach spaces, there exists an unconditionally summable sequence that fails to be absolutely summable. More precisely, the Dvoretzky\u2013Rogers theorem asserts that in every infinite-dimensional Banach space E, there exists an unconditionally convergent series \u2211xj\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\sum x^{\\left( j\\right) }$$\\end{document} such that \u2211\u2016x(j)\u20162-\u03b5=\u221e\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\sum \\Vert x^{(j)}\\Vert ^{2-\\varepsilon }=\\infty $$\\end{document} for all \u03b5>0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varepsilon >0$$\\end{document}. Their proof is non-constructive and Macphail\u2019s result for E=\u21131\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$E=\\ell _{1}$$\\end{document} provides a constructive proof just for \u03b5\u22651\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varepsilon \\ge 1$$\\end{document}. In this note, we revisit Macphail\u2019s paper and present two alternative constructions that work for all \u03b5>0.\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varepsilon >0.$$\\end{document}",
"genre": "article",
"id": "sg:pub.10.1007/s00013-021-01676-z",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1052783",
"issn": [
"0003-889X",
"1420-8938"
],
"name": "Archiv der Mathematik",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "117"
}
],
"keywords": [
"infinite-dimensional Banach space",
"Banach space theory",
"Banach space E",
"Dvoretzky\u2013Rogers Theorem",
"infinite-dimensional Banach space E",
"Banach spaces",
"space E",
"convergent series",
"space theory",
"summable sequences",
"constructive proof",
"theorem",
"alternative construction",
"Dvoretzky",
"converges",
"proof",
"theory",
"space",
"problem",
"Macphail",
"results",
"note",
"construction",
"series",
"literature",
"Rogers",
"sequence",
"paper"
],
"name": "Macphail\u2019s theorem revisited",
"pagination": "647-656",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1142222643"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00013-021-01676-z"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00013-021-01676-z",
"https://app.dimensions.ai/details/publication/pub.1142222643"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_912.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00013-021-01676-z"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01676-z'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01676-z'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01676-z'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01676-z'
This table displays all metadata directly associated to this object as RDF triples.
113 TRIPLES
22 PREDICATES
58 URIs
45 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00013-021-01676-z | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | N61531c0b709744cabebe56b1b9de349f |
4 | ″ | schema:citation | sg:pub.10.1007/bf02759741 |
5 | ″ | ″ | sg:pub.10.1007/bf02760261 |
6 | ″ | ″ | sg:pub.10.1007/s00574-019-00140-5 |
7 | ″ | ″ | sg:pub.10.1007/s10958-014-1912-1 |
8 | ″ | ″ | sg:pub.10.1007/s13348-019-00261-6 |
9 | ″ | schema:datePublished | 2021-10-27 |
10 | ″ | schema:datePublishedReg | 2021-10-27 |
11 | ″ | schema:description | In 1947, M.S. Macphail constructed a series in ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}$$\end{document} that converges unconditionally but does not converge absolutely. According to the literature, this result helped Dvoretzky and Rogers to finally answer a long standing problem of Banach space theory, by showing that in all infinite-dimensional Banach spaces, there exists an unconditionally summable sequence that fails to be absolutely summable. More precisely, the Dvoretzky–Rogers theorem asserts that in every infinite-dimensional Banach space E, there exists an unconditionally convergent series ∑xj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum x^{\left( j\right) }$$\end{document} such that ∑‖x(j)‖2-ε=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum \Vert x^{(j)}\Vert ^{2-\varepsilon }=\infty $$\end{document} for all ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document}. Their proof is non-constructive and Macphail’s result for E=ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E=\ell _{1}$$\end{document} provides a constructive proof just for ε≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \ge 1$$\end{document}. In this note, we revisit Macphail’s paper and present two alternative constructions that work for all ε>0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0.$$\end{document} |
12 | ″ | schema:genre | article |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | true |
15 | ″ | schema:isPartOf | N77762782fa034e13ad955aa4e1247764 |
16 | ″ | ″ | Nc9c02b317dc04a72ba194c4dafdec6c7 |
17 | ″ | ″ | sg:journal.1052783 |
18 | ″ | schema:keywords | Banach space E |
19 | ″ | ″ | Banach space theory |
20 | ″ | ″ | Banach spaces |
21 | ″ | ″ | Dvoretzky |
22 | ″ | ″ | Dvoretzky–Rogers Theorem |
23 | ″ | ″ | Macphail |
24 | ″ | ″ | Rogers |
25 | ″ | ″ | alternative construction |
26 | ″ | ″ | construction |
27 | ″ | ″ | constructive proof |
28 | ″ | ″ | convergent series |
29 | ″ | ″ | converges |
30 | ″ | ″ | infinite-dimensional Banach space |
31 | ″ | ″ | infinite-dimensional Banach space E |
32 | ″ | ″ | literature |
33 | ″ | ″ | note |
34 | ″ | ″ | paper |
35 | ″ | ″ | problem |
36 | ″ | ″ | proof |
37 | ″ | ″ | results |
38 | ″ | ″ | sequence |
39 | ″ | ″ | series |
40 | ″ | ″ | space |
41 | ″ | ″ | space E |
42 | ″ | ″ | space theory |
43 | ″ | ″ | summable sequences |
44 | ″ | ″ | theorem |
45 | ″ | ″ | theory |
46 | ″ | schema:name | Macphail’s theorem revisited |
47 | ″ | schema:pagination | 647-656 |
48 | ″ | schema:productId | N0698653a50b34d1c91df09b79aff1ddc |
49 | ″ | ″ | Nc3ac99b719a34d999580c80d1d3dcbf9 |
50 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1142222643 |
51 | ″ | ″ | https://doi.org/10.1007/s00013-021-01676-z |
52 | ″ | schema:sdDatePublished | 2022-05-20T07:39 |
53 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
54 | ″ | schema:sdPublisher | N7b79ffebc75f49cc9218c65b7f4d81a8 |
55 | ″ | schema:url | https://doi.org/10.1007/s00013-021-01676-z |
56 | ″ | sgo:license | sg:explorer/license/ |
57 | ″ | sgo:sdDataset | articles |
58 | ″ | rdf:type | schema:ScholarlyArticle |
59 | N0698653a50b34d1c91df09b79aff1ddc | schema:name | dimensions_id |
60 | ″ | schema:value | pub.1142222643 |
61 | ″ | rdf:type | schema:PropertyValue |
62 | N61531c0b709744cabebe56b1b9de349f | rdf:first | sg:person.011053537101.98 |
63 | ″ | rdf:rest | N79573a0c2e114858b5743fa831eeb902 |
64 | N77762782fa034e13ad955aa4e1247764 | schema:volumeNumber | 117 |
65 | ″ | rdf:type | schema:PublicationVolume |
66 | N79573a0c2e114858b5743fa831eeb902 | rdf:first | sg:person.013717465245.64 |
67 | ″ | rdf:rest | rdf:nil |
68 | N7b79ffebc75f49cc9218c65b7f4d81a8 | schema:name | Springer Nature - SN SciGraph project |
69 | ″ | rdf:type | schema:Organization |
70 | Nc3ac99b719a34d999580c80d1d3dcbf9 | schema:name | doi |
71 | ″ | schema:value | 10.1007/s00013-021-01676-z |
72 | ″ | rdf:type | schema:PropertyValue |
73 | Nc9c02b317dc04a72ba194c4dafdec6c7 | schema:issueNumber | 6 |
74 | ″ | rdf:type | schema:PublicationIssue |
75 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
76 | ″ | schema:name | Mathematical Sciences |
77 | ″ | rdf:type | schema:DefinedTerm |
78 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
79 | ″ | schema:name | Pure Mathematics |
80 | ″ | rdf:type | schema:DefinedTerm |
81 | sg:journal.1052783 | schema:issn | 0003-889X |
82 | ″ | ″ | 1420-8938 |
83 | ″ | schema:name | Archiv der Mathematik |
84 | ″ | schema:publisher | Springer Nature |
85 | ″ | rdf:type | schema:Periodical |
86 | sg:person.011053537101.98 | schema:affiliation | grid-institutes:grid.411216.1 |
87 | ″ | schema:familyName | Pellegrino |
88 | ″ | schema:givenName | Daniel |
89 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011053537101.98 |
90 | ″ | rdf:type | schema:Person |
91 | sg:person.013717465245.64 | schema:affiliation | grid-institutes:grid.411216.1 |
92 | ″ | schema:familyName | Silva |
93 | ″ | schema:givenName | Janiely |
94 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013717465245.64 |
95 | ″ | rdf:type | schema:Person |
96 | sg:pub.10.1007/bf02759741 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041936754 |
97 | ″ | ″ | https://doi.org/10.1007/bf02759741 |
98 | ″ | rdf:type | schema:CreativeWork |
99 | sg:pub.10.1007/bf02760261 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1014098056 |
100 | ″ | ″ | https://doi.org/10.1007/bf02760261 |
101 | ″ | rdf:type | schema:CreativeWork |
102 | sg:pub.10.1007/s00574-019-00140-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1113263181 |
103 | ″ | ″ | https://doi.org/10.1007/s00574-019-00140-5 |
104 | ″ | rdf:type | schema:CreativeWork |
105 | sg:pub.10.1007/s10958-014-1912-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040732065 |
106 | ″ | ″ | https://doi.org/10.1007/s10958-014-1912-1 |
107 | ″ | rdf:type | schema:CreativeWork |
108 | sg:pub.10.1007/s13348-019-00261-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1120900086 |
109 | ″ | ″ | https://doi.org/10.1007/s13348-019-00261-6 |
110 | ″ | rdf:type | schema:CreativeWork |
111 | grid-institutes:grid.411216.1 | schema:alternateName | Departamento de Matemática, Universidade Federal da Paraíba, 58.051-900, João Pessoa, Brazil |
112 | ″ | schema:name | Departamento de Matemática, Universidade Federal da Paraíba, 58.051-900, João Pessoa, Brazil |
113 | ″ | rdf:type | schema:Organization |