Simple Poisson Ore extensions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-11-17

AUTHORS

Sei-Qwon Oh, Hanna Sim

ABSTRACT

Let A be a Poisson algebra over a field k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{k}$$\end{document} with characteristic zero, let γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} be Poisson derivations on A such that γα=αγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \alpha =\alpha \gamma $$\end{document} and 0≠ρ∈k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\ne \rho \in \mathbf{k}$$\end{document}. Here the notion of a γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-Poisson normal element is introduced, it is proved that the polynomial algebra A[y, x] has a Poisson structure defined by {y,a}=α(a)y,{x,a}=β(a)x,{x,y}=β(y)x+δ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{y,a\}=\alpha (a)y, \{x,a\}=\beta (a)x, \{x,y\}=\beta (y)x+\delta (y)$$\end{document} for a∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in A$$\end{document}, where β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is a Poisson derivation on A[y] defined by β|A=γ-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta |_A=\gamma -\alpha $$\end{document}, β(y)=ρy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta (y)=\rho y$$\end{document} and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} is a derivation on A[y] such that δ|A=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta |_A=0$$\end{document}, and its Poisson simplicity criterion is established and endorsed by examples. More... »

PAGES

133-142

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00013-021-01673-2

DOI

http://dx.doi.org/10.1007/s00013-021-01673-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142671721


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34134, Daejeon, Korea", 
          "id": "http://www.grid.ac/institutes/grid.254230.2", 
          "name": [
            "Department of Mathematics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34134, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Sei-Qwon", 
        "id": "sg:person.015355024117.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015355024117.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34134, Daejeon, Korea", 
          "id": "http://www.grid.ac/institutes/grid.254230.2", 
          "name": [
            "Department of Mathematics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34134, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sim", 
        "givenName": "Hanna", 
        "id": "sg:person.011566761025.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011566761025.09"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-11-17", 
    "datePublishedReg": "2021-11-17", 
    "description": "Let A be a Poisson algebra over a field k\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbf{k}$$\\end{document} with characteristic zero, let \u03b3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\gamma $$\\end{document}, \u03b1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha $$\\end{document} be Poisson derivations on A such that \u03b3\u03b1=\u03b1\u03b3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\gamma \\alpha =\\alpha \\gamma $$\\end{document} and 0\u2260\u03c1\u2208k\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$0\\ne \\rho \\in \\mathbf{k}$$\\end{document}. Here the notion of a \u03b3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\gamma $$\\end{document}-Poisson normal element is introduced, it is proved that the polynomial algebra A[y,\u00a0x] has a Poisson structure defined by {y,a}=\u03b1(a)y,{x,a}=\u03b2(a)x,{x,y}=\u03b2(y)x+\u03b4(y)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\{y,a\\}=\\alpha (a)y, \\{x,a\\}=\\beta (a)x, \\{x,y\\}=\\beta (y)x+\\delta (y)$$\\end{document} for a\u2208A\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$a\\in A$$\\end{document}, where \u03b2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\beta $$\\end{document} is a Poisson derivation on A[y] defined by \u03b2|A=\u03b3-\u03b1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\beta |_A=\\gamma -\\alpha $$\\end{document}, \u03b2(y)=\u03c1y\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\beta (y)=\\rho y$$\\end{document} and \u03b4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\delta $$\\end{document} is a derivation on A[y] such that \u03b4|A=0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\delta |_A=0$$\\end{document}, and its Poisson simplicity criterion is established and endorsed by examples.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00013-021-01673-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052783", 
        "issn": [
          "0003-889X", 
          "1420-8938"
        ], 
        "name": "Archiv der Mathematik", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "118"
      }
    ], 
    "keywords": [
      "normal elements", 
      "criteria", 
      "extension", 
      "notion", 
      "elements", 
      "Poisson algebra", 
      "field", 
      "derivation", 
      "polynomial algebra", 
      "Poisson structure", 
      "structure", 
      "example", 
      "algebra", 
      "\u0393\u03b1", 
      "simplicity criterion", 
      "Ore extensions"
    ], 
    "name": "Simple Poisson Ore extensions", 
    "pagination": "133-142", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142671721"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00013-021-01673-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00013-021-01673-2", 
      "https://app.dimensions.ai/details/publication/pub.1142671721"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_875.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00013-021-01673-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01673-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01673-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01673-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01673-2'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      21 PREDICATES      41 URIs      33 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00013-021-01673-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nda78fe610e644c9899ef458e278fe96d
4 schema:datePublished 2021-11-17
5 schema:datePublishedReg 2021-11-17
6 schema:description Let A be a Poisson algebra over a field k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{k}$$\end{document} with characteristic zero, let γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} be Poisson derivations on A such that γα=αγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \alpha =\alpha \gamma $$\end{document} and 0≠ρ∈k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\ne \rho \in \mathbf{k}$$\end{document}. Here the notion of a γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-Poisson normal element is introduced, it is proved that the polynomial algebra A[y, x] has a Poisson structure defined by {y,a}=α(a)y,{x,a}=β(a)x,{x,y}=β(y)x+δ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{y,a\}=\alpha (a)y, \{x,a\}=\beta (a)x, \{x,y\}=\beta (y)x+\delta (y)$$\end{document} for a∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in A$$\end{document}, where β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is a Poisson derivation on A[y] defined by β|A=γ-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta |_A=\gamma -\alpha $$\end{document}, β(y)=ρy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta (y)=\rho y$$\end{document} and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} is a derivation on A[y] such that δ|A=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta |_A=0$$\end{document}, and its Poisson simplicity criterion is established and endorsed by examples.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N8ad48d121fba42b4bddaa2343c652238
11 Nf2fda492c2c54930b8022a749c823b49
12 sg:journal.1052783
13 schema:keywords Ore extensions
14 Poisson algebra
15 Poisson structure
16 algebra
17 criteria
18 derivation
19 elements
20 example
21 extension
22 field
23 normal elements
24 notion
25 polynomial algebra
26 simplicity criterion
27 structure
28 Γα
29 schema:name Simple Poisson Ore extensions
30 schema:pagination 133-142
31 schema:productId N2252710aa1a34ab99e252e24ef227638
32 Nde6944015ada4e40a47595bc0a680136
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142671721
34 https://doi.org/10.1007/s00013-021-01673-2
35 schema:sdDatePublished 2022-05-20T07:38
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Na490d47e95af4bf5b1a191a11c832b5b
38 schema:url https://doi.org/10.1007/s00013-021-01673-2
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N2252710aa1a34ab99e252e24ef227638 schema:name dimensions_id
43 schema:value pub.1142671721
44 rdf:type schema:PropertyValue
45 N36e1c6fe20d246d79638b727d21a698f rdf:first sg:person.011566761025.09
46 rdf:rest rdf:nil
47 N8ad48d121fba42b4bddaa2343c652238 schema:issueNumber 2
48 rdf:type schema:PublicationIssue
49 Na490d47e95af4bf5b1a191a11c832b5b schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Nda78fe610e644c9899ef458e278fe96d rdf:first sg:person.015355024117.11
52 rdf:rest N36e1c6fe20d246d79638b727d21a698f
53 Nde6944015ada4e40a47595bc0a680136 schema:name doi
54 schema:value 10.1007/s00013-021-01673-2
55 rdf:type schema:PropertyValue
56 Nf2fda492c2c54930b8022a749c823b49 schema:volumeNumber 118
57 rdf:type schema:PublicationVolume
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1052783 schema:issn 0003-889X
65 1420-8938
66 schema:name Archiv der Mathematik
67 schema:publisher Springer Nature
68 rdf:type schema:Periodical
69 sg:person.011566761025.09 schema:affiliation grid-institutes:grid.254230.2
70 schema:familyName Sim
71 schema:givenName Hanna
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011566761025.09
73 rdf:type schema:Person
74 sg:person.015355024117.11 schema:affiliation grid-institutes:grid.254230.2
75 schema:familyName Oh
76 schema:givenName Sei-Qwon
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015355024117.11
78 rdf:type schema:Person
79 grid-institutes:grid.254230.2 schema:alternateName Department of Mathematics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34134, Daejeon, Korea
80 schema:name Department of Mathematics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34134, Daejeon, Korea
81 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...