2021-11-17
AUTHORS ABSTRACTLet A be a Poisson algebra over a field k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{k}$$\end{document} with characteristic zero, let γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} be Poisson derivations on A such that γα=αγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \alpha =\alpha \gamma $$\end{document} and 0≠ρ∈k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\ne \rho \in \mathbf{k}$$\end{document}. Here the notion of a γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-Poisson normal element is introduced, it is proved that the polynomial algebra A[y, x] has a Poisson structure defined by {y,a}=α(a)y,{x,a}=β(a)x,{x,y}=β(y)x+δ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{y,a\}=\alpha (a)y, \{x,a\}=\beta (a)x, \{x,y\}=\beta (y)x+\delta (y)$$\end{document} for a∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in A$$\end{document}, where β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is a Poisson derivation on A[y] defined by β|A=γ-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta |_A=\gamma -\alpha $$\end{document}, β(y)=ρy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta (y)=\rho y$$\end{document} and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} is a derivation on A[y] such that δ|A=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta |_A=0$$\end{document}, and its Poisson simplicity criterion is established and endorsed by examples. More... »
PAGES133-142
http://scigraph.springernature.com/pub.10.1007/s00013-021-01673-2
DOIhttp://dx.doi.org/10.1007/s00013-021-01673-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1142671721
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34134, Daejeon, Korea",
"id": "http://www.grid.ac/institutes/grid.254230.2",
"name": [
"Department of Mathematics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34134, Daejeon, Korea"
],
"type": "Organization"
},
"familyName": "Oh",
"givenName": "Sei-Qwon",
"id": "sg:person.015355024117.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015355024117.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34134, Daejeon, Korea",
"id": "http://www.grid.ac/institutes/grid.254230.2",
"name": [
"Department of Mathematics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34134, Daejeon, Korea"
],
"type": "Organization"
},
"familyName": "Sim",
"givenName": "Hanna",
"id": "sg:person.011566761025.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011566761025.09"
],
"type": "Person"
}
],
"datePublished": "2021-11-17",
"datePublishedReg": "2021-11-17",
"description": "Let A be a Poisson algebra over a field k\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbf{k}$$\\end{document} with characteristic zero, let \u03b3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\gamma $$\\end{document}, \u03b1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha $$\\end{document} be Poisson derivations on A such that \u03b3\u03b1=\u03b1\u03b3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\gamma \\alpha =\\alpha \\gamma $$\\end{document} and 0\u2260\u03c1\u2208k\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$0\\ne \\rho \\in \\mathbf{k}$$\\end{document}. Here the notion of a \u03b3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\gamma $$\\end{document}-Poisson normal element is introduced, it is proved that the polynomial algebra A[y,\u00a0x] has a Poisson structure defined by {y,a}=\u03b1(a)y,{x,a}=\u03b2(a)x,{x,y}=\u03b2(y)x+\u03b4(y)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\{y,a\\}=\\alpha (a)y, \\{x,a\\}=\\beta (a)x, \\{x,y\\}=\\beta (y)x+\\delta (y)$$\\end{document} for a\u2208A\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$a\\in A$$\\end{document}, where \u03b2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\beta $$\\end{document} is a Poisson derivation on A[y] defined by \u03b2|A=\u03b3-\u03b1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\beta |_A=\\gamma -\\alpha $$\\end{document}, \u03b2(y)=\u03c1y\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\beta (y)=\\rho y$$\\end{document} and \u03b4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\delta $$\\end{document} is a derivation on A[y] such that \u03b4|A=0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\delta |_A=0$$\\end{document}, and its Poisson simplicity criterion is established and endorsed by examples.",
"genre": "article",
"id": "sg:pub.10.1007/s00013-021-01673-2",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1052783",
"issn": [
"0003-889X",
"1420-8938"
],
"name": "Archiv der Mathematik",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "118"
}
],
"keywords": [
"normal elements",
"criteria",
"extension",
"notion",
"elements",
"Poisson algebra",
"field",
"derivation",
"polynomial algebra",
"Poisson structure",
"structure",
"example",
"algebra",
"\u0393\u03b1",
"simplicity criterion",
"Ore extensions"
],
"name": "Simple Poisson Ore extensions",
"pagination": "133-142",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1142671721"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00013-021-01673-2"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00013-021-01673-2",
"https://app.dimensions.ai/details/publication/pub.1142671721"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_875.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00013-021-01673-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01673-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01673-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01673-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01673-2'
This table displays all metadata directly associated to this object as RDF triples.
81 TRIPLES
21 PREDICATES
41 URIs
33 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00013-021-01673-2 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | Nda78fe610e644c9899ef458e278fe96d |
4 | ″ | schema:datePublished | 2021-11-17 |
5 | ″ | schema:datePublishedReg | 2021-11-17 |
6 | ″ | schema:description | Let A be a Poisson algebra over a field k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{k}$$\end{document} with characteristic zero, let γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} be Poisson derivations on A such that γα=αγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \alpha =\alpha \gamma $$\end{document} and 0≠ρ∈k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\ne \rho \in \mathbf{k}$$\end{document}. Here the notion of a γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-Poisson normal element is introduced, it is proved that the polynomial algebra A[y, x] has a Poisson structure defined by {y,a}=α(a)y,{x,a}=β(a)x,{x,y}=β(y)x+δ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{y,a\}=\alpha (a)y, \{x,a\}=\beta (a)x, \{x,y\}=\beta (y)x+\delta (y)$$\end{document} for a∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in A$$\end{document}, where β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is a Poisson derivation on A[y] defined by β|A=γ-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta |_A=\gamma -\alpha $$\end{document}, β(y)=ρy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta (y)=\rho y$$\end{document} and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} is a derivation on A[y] such that δ|A=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta |_A=0$$\end{document}, and its Poisson simplicity criterion is established and endorsed by examples. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N8ad48d121fba42b4bddaa2343c652238 |
11 | ″ | ″ | Nf2fda492c2c54930b8022a749c823b49 |
12 | ″ | ″ | sg:journal.1052783 |
13 | ″ | schema:keywords | Ore extensions |
14 | ″ | ″ | Poisson algebra |
15 | ″ | ″ | Poisson structure |
16 | ″ | ″ | algebra |
17 | ″ | ″ | criteria |
18 | ″ | ″ | derivation |
19 | ″ | ″ | elements |
20 | ″ | ″ | example |
21 | ″ | ″ | extension |
22 | ″ | ″ | field |
23 | ″ | ″ | normal elements |
24 | ″ | ″ | notion |
25 | ″ | ″ | polynomial algebra |
26 | ″ | ″ | simplicity criterion |
27 | ″ | ″ | structure |
28 | ″ | ″ | Γα |
29 | ″ | schema:name | Simple Poisson Ore extensions |
30 | ″ | schema:pagination | 133-142 |
31 | ″ | schema:productId | N2252710aa1a34ab99e252e24ef227638 |
32 | ″ | ″ | Nde6944015ada4e40a47595bc0a680136 |
33 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1142671721 |
34 | ″ | ″ | https://doi.org/10.1007/s00013-021-01673-2 |
35 | ″ | schema:sdDatePublished | 2022-05-20T07:38 |
36 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
37 | ″ | schema:sdPublisher | Na490d47e95af4bf5b1a191a11c832b5b |
38 | ″ | schema:url | https://doi.org/10.1007/s00013-021-01673-2 |
39 | ″ | sgo:license | sg:explorer/license/ |
40 | ″ | sgo:sdDataset | articles |
41 | ″ | rdf:type | schema:ScholarlyArticle |
42 | N2252710aa1a34ab99e252e24ef227638 | schema:name | dimensions_id |
43 | ″ | schema:value | pub.1142671721 |
44 | ″ | rdf:type | schema:PropertyValue |
45 | N36e1c6fe20d246d79638b727d21a698f | rdf:first | sg:person.011566761025.09 |
46 | ″ | rdf:rest | rdf:nil |
47 | N8ad48d121fba42b4bddaa2343c652238 | schema:issueNumber | 2 |
48 | ″ | rdf:type | schema:PublicationIssue |
49 | Na490d47e95af4bf5b1a191a11c832b5b | schema:name | Springer Nature - SN SciGraph project |
50 | ″ | rdf:type | schema:Organization |
51 | Nda78fe610e644c9899ef458e278fe96d | rdf:first | sg:person.015355024117.11 |
52 | ″ | rdf:rest | N36e1c6fe20d246d79638b727d21a698f |
53 | Nde6944015ada4e40a47595bc0a680136 | schema:name | doi |
54 | ″ | schema:value | 10.1007/s00013-021-01673-2 |
55 | ″ | rdf:type | schema:PropertyValue |
56 | Nf2fda492c2c54930b8022a749c823b49 | schema:volumeNumber | 118 |
57 | ″ | rdf:type | schema:PublicationVolume |
58 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
59 | ″ | schema:name | Mathematical Sciences |
60 | ″ | rdf:type | schema:DefinedTerm |
61 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
62 | ″ | schema:name | Pure Mathematics |
63 | ″ | rdf:type | schema:DefinedTerm |
64 | sg:journal.1052783 | schema:issn | 0003-889X |
65 | ″ | ″ | 1420-8938 |
66 | ″ | schema:name | Archiv der Mathematik |
67 | ″ | schema:publisher | Springer Nature |
68 | ″ | rdf:type | schema:Periodical |
69 | sg:person.011566761025.09 | schema:affiliation | grid-institutes:grid.254230.2 |
70 | ″ | schema:familyName | Sim |
71 | ″ | schema:givenName | Hanna |
72 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011566761025.09 |
73 | ″ | rdf:type | schema:Person |
74 | sg:person.015355024117.11 | schema:affiliation | grid-institutes:grid.254230.2 |
75 | ″ | schema:familyName | Oh |
76 | ″ | schema:givenName | Sei-Qwon |
77 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015355024117.11 |
78 | ″ | rdf:type | schema:Person |
79 | grid-institutes:grid.254230.2 | schema:alternateName | Department of Mathematics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34134, Daejeon, Korea |
80 | ″ | schema:name | Department of Mathematics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34134, Daejeon, Korea |
81 | ″ | rdf:type | schema:Organization |