Ontology type: schema:ScholarlyArticle
2021-10-30
AUTHORSAli Alsetri, Xuancheng Shao
ABSTRACTWe consider the problem of bounding the dimension of Hilbert cubes in a finite field Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_p$$\end{document} that does not contain any primitive roots. We show that the dimension of such Hilbert cubes is Oε(p1/8+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_{\varepsilon }(p^{1/8+\varepsilon })$$\end{document} for any ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon > 0$$\end{document}, matching what can be deduced from the classical Burgess estimate in the special case when the Hilbert cube is an arithmetic progression. We also consider the dual problem of bounding the dimension of multiplicative Hilbert cubes avoiding an interval. More... »
PAGES49-56
http://scigraph.springernature.com/pub.10.1007/s00013-021-01672-3
DOIhttp://dx.doi.org/10.1007/s00013-021-01672-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1142268973
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, University of Kentucky, 715 Patterson Office Tower, 40506, Lexington, KY, USA",
"id": "http://www.grid.ac/institutes/grid.266539.d",
"name": [
"Department of Mathematics, University of Kentucky, 715 Patterson Office Tower, 40506, Lexington, KY, USA"
],
"type": "Organization"
},
"familyName": "Alsetri",
"givenName": "Ali",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, University of Kentucky, 715 Patterson Office Tower, 40506, Lexington, KY, USA",
"id": "http://www.grid.ac/institutes/grid.266539.d",
"name": [
"Department of Mathematics, University of Kentucky, 715 Patterson Office Tower, 40506, Lexington, KY, USA"
],
"type": "Organization"
},
"familyName": "Shao",
"givenName": "Xuancheng",
"id": "sg:person.013143332455.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013143332455.02"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00039-008-0691-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016864115",
"https://doi.org/10.1007/s00039-008-0691-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4614-6642-0_10",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020102212",
"https://doi.org/10.1007/978-1-4614-6642-0_10"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11856-012-0047-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004512436",
"https://doi.org/10.1007/s11856-012-0047-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1009883404485",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005722999",
"https://doi.org/10.1023/a:1009883404485"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-10-30",
"datePublishedReg": "2021-10-30",
"description": "We consider the problem of bounding the dimension of Hilbert cubes in a finite field Fp\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbb {F}_p$$\\end{document} that does not contain any primitive roots. We show that the dimension of such Hilbert cubes is O\u03b5(p1/8+\u03b5)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$O_{\\varepsilon }(p^{1/8+\\varepsilon })$$\\end{document} for any \u03b5>0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varepsilon > 0$$\\end{document}, matching what can be deduced from the classical Burgess estimate in the special case when the Hilbert cube is an arithmetic progression. We also consider the dual problem of bounding the dimension of multiplicative Hilbert cubes avoiding an interval.",
"genre": "article",
"id": "sg:pub.10.1007/s00013-021-01672-3",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.7508197",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1052783",
"issn": [
"0003-889X",
"1420-8938"
],
"name": "Archiv der Mathematik",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "118"
}
],
"keywords": [
"progression",
"finite field",
"cases",
"interval",
"problem",
"dimensions",
"field",
"primitive root",
"roots",
"Hilbert cube",
"cube",
"estimates",
"special case",
"dual problem",
"Hilbert",
"arithmetic progressions"
],
"name": "On Hilbert cubes and primitive roots in finite fields",
"pagination": "49-56",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1142268973"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00013-021-01672-3"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00013-021-01672-3",
"https://app.dimensions.ai/details/publication/pub.1142268973"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_903.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00013-021-01672-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01672-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01672-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01672-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01672-3'
This table displays all metadata directly associated to this object as RDF triples.
98 TRIPLES
22 PREDICATES
45 URIs
33 LITERALS
6 BLANK NODES