Ontology type: schema:ScholarlyArticle
2021-10-20
AUTHORSM. Ramezan-Nassab, M. H. Bien, M. Akbari-Sehat
ABSTRACTLet R be an algebraic algebra over an infinite field and ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document} be an involution on R. We show that if the units of R, U(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}}(R)$$\end{document}, satisfy a ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-Laurent polynomial identity, then R satisfies a polynomial identity. Also, let G be a torsion group and F a field. As a generalization of Hartley’s Conjecture, in Broche et al. (Arch Math 111:353–367, 2018), it is shown that if U(FG)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}}(FG)$$\end{document} satisfies a Laurent polynomial identity which is not satisfied by the units of the relative free algebra F[α,β:α2=β2=0]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F[\alpha , \beta :\alpha ^2=\beta ^2=0]$$\end{document}, then FG satisfies a polynomial identity. In this paper, we instead consider non-torsion groups G and provide some necessary conditions for U(FG)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}}(FG)$$\end{document} to satisfy a Laurent polynomial identity. More... »
PAGES617-630
http://scigraph.springernature.com/pub.10.1007/s00013-021-01671-4
DOIhttp://dx.doi.org/10.1007/s00013-021-01671-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1142027720
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Kharazmi University, 50 Taleghani St., Tehran, Iran",
"id": "http://www.grid.ac/institutes/grid.412265.6",
"name": [
"Department of Mathematics, Kharazmi University, 50 Taleghani St., Tehran, Iran"
],
"type": "Organization"
},
"familyName": "Ramezan-Nassab",
"givenName": "M.",
"id": "sg:person.011437564127.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011437564127.80"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Vietnam National University, Ho Chi Minh City, Vietnam",
"id": "http://www.grid.ac/institutes/grid.444808.4",
"name": [
"Faculty of Mathematics and Computer Science, University of Science, Ho Chi Minh City, Vietnam",
"Vietnam National University, Ho Chi Minh City, Vietnam"
],
"type": "Organization"
},
"familyName": "Bien",
"givenName": "M. H.",
"id": "sg:person.010757014217.74",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010757014217.74"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Kharazmi University, 50 Taleghani St., Tehran, Iran",
"id": "http://www.grid.ac/institutes/grid.412265.6",
"name": [
"Department of Mathematics, Kharazmi University, 50 Taleghani St., Tehran, Iran"
],
"type": "Organization"
},
"familyName": "Akbari-Sehat",
"givenName": "M.",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-94-010-0405-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109716744",
"https://doi.org/10.1007/978-94-010-0405-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00013-010-0195-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016665892",
"https://doi.org/10.1007/s00013-010-0195-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02771748",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019827293",
"https://doi.org/10.1007/bf02771748"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00013-018-1223-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105760467",
"https://doi.org/10.1007/s00013-018-1223-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01189563",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051645831",
"https://doi.org/10.1007/bf01189563"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-84996-504-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053419099",
"https://doi.org/10.1007/978-1-84996-504-0"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-10-20",
"datePublishedReg": "2021-10-20",
"description": "Let R be an algebraic algebra over an infinite field and \u2217\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$*$$\\end{document} be an involution on R. We show that if the units of R, U(R)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {U}}(R)$$\\end{document}, satisfy a \u2217\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$*$$\\end{document}-Laurent polynomial identity, then R satisfies a polynomial identity. Also, let G be a torsion group and F a field. As a generalization of Hartley\u2019s Conjecture, in Broche et al. (Arch Math 111:353\u2013367, 2018), it is shown that if U(FG)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {U}}(FG)$$\\end{document} satisfies a Laurent polynomial identity which is not satisfied by the units of the relative free algebra F[\u03b1,\u03b2:\u03b12=\u03b22=0]\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$F[\\alpha , \\beta :\\alpha ^2=\\beta ^2=0]$$\\end{document}, then FG satisfies a polynomial identity. In this paper, we instead consider non-torsion groups G and provide some necessary conditions for U(FG)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {U}}(FG)$$\\end{document} to satisfy a Laurent polynomial identity.",
"genre": "article",
"id": "sg:pub.10.1007/s00013-021-01671-4",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1052783",
"issn": [
"0003-889X",
"1420-8938"
],
"name": "Archiv der Mathematik",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "117"
}
],
"keywords": [
"polynomial identities",
"algebraic algebra",
"free algebras",
"infinite field",
"algebra",
"group G",
"torsion group",
"necessary condition",
"conjecture",
"field",
"et al",
"generalization",
"involution",
"al",
"conditions",
"FG",
"units",
"identity",
"group",
"paper"
],
"name": "Algebras whose units satisfy a \u2217-Laurent polynomial identity",
"pagination": "617-630",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1142027720"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00013-021-01671-4"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00013-021-01671-4",
"https://app.dimensions.ai/details/publication/pub.1142027720"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_907.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00013-021-01671-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01671-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01671-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01671-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01671-4'
This table displays all metadata directly associated to this object as RDF triples.
119 TRIPLES
22 PREDICATES
51 URIs
37 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00013-021-01671-4 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | N8f18c2d84e1b497eaef0c1039087c1bf |
4 | ″ | schema:citation | sg:pub.10.1007/978-1-84996-504-0 |
5 | ″ | ″ | sg:pub.10.1007/978-94-010-0405-3 |
6 | ″ | ″ | sg:pub.10.1007/bf01189563 |
7 | ″ | ″ | sg:pub.10.1007/bf02771748 |
8 | ″ | ″ | sg:pub.10.1007/s00013-010-0195-0 |
9 | ″ | ″ | sg:pub.10.1007/s00013-018-1223-8 |
10 | ″ | schema:datePublished | 2021-10-20 |
11 | ″ | schema:datePublishedReg | 2021-10-20 |
12 | ″ | schema:description | Let R be an algebraic algebra over an infinite field and ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document} be an involution on R. We show that if the units of R, U(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}}(R)$$\end{document}, satisfy a ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-Laurent polynomial identity, then R satisfies a polynomial identity. Also, let G be a torsion group and F a field. As a generalization of Hartley’s Conjecture, in Broche et al. (Arch Math 111:353–367, 2018), it is shown that if U(FG)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}}(FG)$$\end{document} satisfies a Laurent polynomial identity which is not satisfied by the units of the relative free algebra F[α,β:α2=β2=0]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F[\alpha , \beta :\alpha ^2=\beta ^2=0]$$\end{document}, then FG satisfies a polynomial identity. In this paper, we instead consider non-torsion groups G and provide some necessary conditions for U(FG)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}}(FG)$$\end{document} to satisfy a Laurent polynomial identity. |
13 | ″ | schema:genre | article |
14 | ″ | schema:inLanguage | en |
15 | ″ | schema:isAccessibleForFree | false |
16 | ″ | schema:isPartOf | N379876379f644754936655c5256bdabe |
17 | ″ | ″ | N77c04f457a7d4e338e7762ae77b6a19b |
18 | ″ | ″ | sg:journal.1052783 |
19 | ″ | schema:keywords | FG |
20 | ″ | ″ | al |
21 | ″ | ″ | algebra |
22 | ″ | ″ | algebraic algebra |
23 | ″ | ″ | conditions |
24 | ″ | ″ | conjecture |
25 | ″ | ″ | et al |
26 | ″ | ″ | field |
27 | ″ | ″ | free algebras |
28 | ″ | ″ | generalization |
29 | ″ | ″ | group |
30 | ″ | ″ | group G |
31 | ″ | ″ | identity |
32 | ″ | ″ | infinite field |
33 | ″ | ″ | involution |
34 | ″ | ″ | necessary condition |
35 | ″ | ″ | paper |
36 | ″ | ″ | polynomial identities |
37 | ″ | ″ | torsion group |
38 | ″ | ″ | units |
39 | ″ | schema:name | Algebras whose units satisfy a ∗-Laurent polynomial identity |
40 | ″ | schema:pagination | 617-630 |
41 | ″ | schema:productId | N6f6e9d6fb62b44eca01e722198ec0bbe |
42 | ″ | ″ | Nccdbce08095040079ccbcb0e6554e461 |
43 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1142027720 |
44 | ″ | ″ | https://doi.org/10.1007/s00013-021-01671-4 |
45 | ″ | schema:sdDatePublished | 2022-05-20T07:38 |
46 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
47 | ″ | schema:sdPublisher | N1e61c0b3266f47ff8184965225f589f9 |
48 | ″ | schema:url | https://doi.org/10.1007/s00013-021-01671-4 |
49 | ″ | sgo:license | sg:explorer/license/ |
50 | ″ | sgo:sdDataset | articles |
51 | ″ | rdf:type | schema:ScholarlyArticle |
52 | N1e61c0b3266f47ff8184965225f589f9 | schema:name | Springer Nature - SN SciGraph project |
53 | ″ | rdf:type | schema:Organization |
54 | N379876379f644754936655c5256bdabe | schema:volumeNumber | 117 |
55 | ″ | rdf:type | schema:PublicationVolume |
56 | N5bf834db2d5b4acd900e732863735821 | rdf:first | N82aa312067cf47d883c58a0f3c87a7a5 |
57 | ″ | rdf:rest | rdf:nil |
58 | N64ffe7019e3949b8b24fa5f2d1bc75f4 | rdf:first | sg:person.010757014217.74 |
59 | ″ | rdf:rest | N5bf834db2d5b4acd900e732863735821 |
60 | N6f6e9d6fb62b44eca01e722198ec0bbe | schema:name | dimensions_id |
61 | ″ | schema:value | pub.1142027720 |
62 | ″ | rdf:type | schema:PropertyValue |
63 | N77c04f457a7d4e338e7762ae77b6a19b | schema:issueNumber | 6 |
64 | ″ | rdf:type | schema:PublicationIssue |
65 | N82aa312067cf47d883c58a0f3c87a7a5 | schema:affiliation | grid-institutes:grid.412265.6 |
66 | ″ | schema:familyName | Akbari-Sehat |
67 | ″ | schema:givenName | M. |
68 | ″ | rdf:type | schema:Person |
69 | N8f18c2d84e1b497eaef0c1039087c1bf | rdf:first | sg:person.011437564127.80 |
70 | ″ | rdf:rest | N64ffe7019e3949b8b24fa5f2d1bc75f4 |
71 | Nccdbce08095040079ccbcb0e6554e461 | schema:name | doi |
72 | ″ | schema:value | 10.1007/s00013-021-01671-4 |
73 | ″ | rdf:type | schema:PropertyValue |
74 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
75 | ″ | schema:name | Mathematical Sciences |
76 | ″ | rdf:type | schema:DefinedTerm |
77 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
78 | ″ | schema:name | Pure Mathematics |
79 | ″ | rdf:type | schema:DefinedTerm |
80 | sg:journal.1052783 | schema:issn | 0003-889X |
81 | ″ | ″ | 1420-8938 |
82 | ″ | schema:name | Archiv der Mathematik |
83 | ″ | schema:publisher | Springer Nature |
84 | ″ | rdf:type | schema:Periodical |
85 | sg:person.010757014217.74 | schema:affiliation | grid-institutes:grid.444808.4 |
86 | ″ | schema:familyName | Bien |
87 | ″ | schema:givenName | M. H. |
88 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010757014217.74 |
89 | ″ | rdf:type | schema:Person |
90 | sg:person.011437564127.80 | schema:affiliation | grid-institutes:grid.412265.6 |
91 | ″ | schema:familyName | Ramezan-Nassab |
92 | ″ | schema:givenName | M. |
93 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011437564127.80 |
94 | ″ | rdf:type | schema:Person |
95 | sg:pub.10.1007/978-1-84996-504-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1053419099 |
96 | ″ | ″ | https://doi.org/10.1007/978-1-84996-504-0 |
97 | ″ | rdf:type | schema:CreativeWork |
98 | sg:pub.10.1007/978-94-010-0405-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1109716744 |
99 | ″ | ″ | https://doi.org/10.1007/978-94-010-0405-3 |
100 | ″ | rdf:type | schema:CreativeWork |
101 | sg:pub.10.1007/bf01189563 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1051645831 |
102 | ″ | ″ | https://doi.org/10.1007/bf01189563 |
103 | ″ | rdf:type | schema:CreativeWork |
104 | sg:pub.10.1007/bf02771748 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019827293 |
105 | ″ | ″ | https://doi.org/10.1007/bf02771748 |
106 | ″ | rdf:type | schema:CreativeWork |
107 | sg:pub.10.1007/s00013-010-0195-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1016665892 |
108 | ″ | ″ | https://doi.org/10.1007/s00013-010-0195-0 |
109 | ″ | rdf:type | schema:CreativeWork |
110 | sg:pub.10.1007/s00013-018-1223-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1105760467 |
111 | ″ | ″ | https://doi.org/10.1007/s00013-018-1223-8 |
112 | ″ | rdf:type | schema:CreativeWork |
113 | grid-institutes:grid.412265.6 | schema:alternateName | Department of Mathematics, Kharazmi University, 50 Taleghani St., Tehran, Iran |
114 | ″ | schema:name | Department of Mathematics, Kharazmi University, 50 Taleghani St., Tehran, Iran |
115 | ″ | rdf:type | schema:Organization |
116 | grid-institutes:grid.444808.4 | schema:alternateName | Vietnam National University, Ho Chi Minh City, Vietnam |
117 | ″ | schema:name | Faculty of Mathematics and Computer Science, University of Science, Ho Chi Minh City, Vietnam |
118 | ″ | ″ | Vietnam National University, Ho Chi Minh City, Vietnam |
119 | ″ | rdf:type | schema:Organization |