Algebras whose units satisfy a ∗-Laurent polynomial identity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-10-20

AUTHORS

M. Ramezan-Nassab, M. H. Bien, M. Akbari-Sehat

ABSTRACT

Let R be an algebraic algebra over an infinite field and ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document} be an involution on R. We show that if the units of R, U(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}}(R)$$\end{document}, satisfy a ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-Laurent polynomial identity, then R satisfies a polynomial identity. Also, let G be a torsion group and F a field. As a generalization of Hartley’s Conjecture, in Broche et al. (Arch Math 111:353–367, 2018), it is shown that if U(FG)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}}(FG)$$\end{document} satisfies a Laurent polynomial identity which is not satisfied by the units of the relative free algebra F[α,β:α2=β2=0]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F[\alpha , \beta :\alpha ^2=\beta ^2=0]$$\end{document}, then FG satisfies a polynomial identity. In this paper, we instead consider non-torsion groups G and provide some necessary conditions for U(FG)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}}(FG)$$\end{document} to satisfy a Laurent polynomial identity. More... »

PAGES

617-630

References to SciGraph publications

  • 1994-10. Group identities on units of rings in ARCHIV DER MATHEMATIK
  • 2010-11-06. Star-group identities and groups of units in ARCHIV DER MATHEMATIK
  • 1969-03. Identities in rings with involutions in ISRAEL JOURNAL OF MATHEMATICS
  • 2018-07-21. Group algebras whose units satisfy a Laurent polynomial identity in ARCHIV DER MATHEMATIK
  • 2010. Group Identities on Units and Symmetric Units of Group Rings in NONE
  • 2002. An Introduction to Group Rings in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00013-021-01671-4

    DOI

    http://dx.doi.org/10.1007/s00013-021-01671-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1142027720


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Kharazmi University, 50 Taleghani St., Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.412265.6", 
              "name": [
                "Department of Mathematics, Kharazmi University, 50 Taleghani St., Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ramezan-Nassab", 
            "givenName": "M.", 
            "id": "sg:person.011437564127.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011437564127.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Vietnam National University, Ho Chi Minh City, Vietnam", 
              "id": "http://www.grid.ac/institutes/grid.444808.4", 
              "name": [
                "Faculty of Mathematics and Computer Science, University of Science, Ho Chi Minh City, Vietnam", 
                "Vietnam National University, Ho Chi Minh City, Vietnam"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bien", 
            "givenName": "M. H.", 
            "id": "sg:person.010757014217.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010757014217.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Kharazmi University, 50 Taleghani St., Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.412265.6", 
              "name": [
                "Department of Mathematics, Kharazmi University, 50 Taleghani St., Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akbari-Sehat", 
            "givenName": "M.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-94-010-0405-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109716744", 
              "https://doi.org/10.1007/978-94-010-0405-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00013-010-0195-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016665892", 
              "https://doi.org/10.1007/s00013-010-0195-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02771748", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019827293", 
              "https://doi.org/10.1007/bf02771748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00013-018-1223-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105760467", 
              "https://doi.org/10.1007/s00013-018-1223-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01189563", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051645831", 
              "https://doi.org/10.1007/bf01189563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-84996-504-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053419099", 
              "https://doi.org/10.1007/978-1-84996-504-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-10-20", 
        "datePublishedReg": "2021-10-20", 
        "description": "Let R be an algebraic algebra over an infinite field and \u2217\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$*$$\\end{document} be an involution on R. We show that if the units of R, U(R)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {U}}(R)$$\\end{document}, satisfy a \u2217\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$*$$\\end{document}-Laurent polynomial identity, then R satisfies a polynomial identity. Also, let G be a torsion group and F a field. As a generalization of Hartley\u2019s Conjecture, in Broche et al. (Arch Math 111:353\u2013367, 2018), it is shown that if U(FG)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {U}}(FG)$$\\end{document} satisfies a Laurent polynomial identity which is not satisfied by the units of the relative free algebra F[\u03b1,\u03b2:\u03b12=\u03b22=0]\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$F[\\alpha , \\beta :\\alpha ^2=\\beta ^2=0]$$\\end{document}, then FG satisfies a polynomial identity. In this paper, we instead consider non-torsion groups G and provide some necessary conditions for U(FG)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {U}}(FG)$$\\end{document} to satisfy a Laurent polynomial identity.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00013-021-01671-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052783", 
            "issn": [
              "0003-889X", 
              "1420-8938"
            ], 
            "name": "Archiv der Mathematik", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "117"
          }
        ], 
        "keywords": [
          "polynomial identities", 
          "algebraic algebra", 
          "free algebras", 
          "infinite field", 
          "algebra", 
          "group G", 
          "torsion group", 
          "necessary condition", 
          "conjecture", 
          "field", 
          "et al", 
          "generalization", 
          "involution", 
          "al", 
          "conditions", 
          "FG", 
          "units", 
          "identity", 
          "group", 
          "paper"
        ], 
        "name": "Algebras whose units satisfy a \u2217-Laurent polynomial identity", 
        "pagination": "617-630", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1142027720"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00013-021-01671-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00013-021-01671-4", 
          "https://app.dimensions.ai/details/publication/pub.1142027720"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_907.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00013-021-01671-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01671-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01671-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01671-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01671-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    119 TRIPLES      22 PREDICATES      51 URIs      37 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00013-021-01671-4 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N8f18c2d84e1b497eaef0c1039087c1bf
    4 schema:citation sg:pub.10.1007/978-1-84996-504-0
    5 sg:pub.10.1007/978-94-010-0405-3
    6 sg:pub.10.1007/bf01189563
    7 sg:pub.10.1007/bf02771748
    8 sg:pub.10.1007/s00013-010-0195-0
    9 sg:pub.10.1007/s00013-018-1223-8
    10 schema:datePublished 2021-10-20
    11 schema:datePublishedReg 2021-10-20
    12 schema:description Let R be an algebraic algebra over an infinite field and ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document} be an involution on R. We show that if the units of R, U(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}}(R)$$\end{document}, satisfy a ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-Laurent polynomial identity, then R satisfies a polynomial identity. Also, let G be a torsion group and F a field. As a generalization of Hartley’s Conjecture, in Broche et al. (Arch Math 111:353–367, 2018), it is shown that if U(FG)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}}(FG)$$\end{document} satisfies a Laurent polynomial identity which is not satisfied by the units of the relative free algebra F[α,β:α2=β2=0]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F[\alpha , \beta :\alpha ^2=\beta ^2=0]$$\end{document}, then FG satisfies a polynomial identity. In this paper, we instead consider non-torsion groups G and provide some necessary conditions for U(FG)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}}(FG)$$\end{document} to satisfy a Laurent polynomial identity.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N379876379f644754936655c5256bdabe
    17 N77c04f457a7d4e338e7762ae77b6a19b
    18 sg:journal.1052783
    19 schema:keywords FG
    20 al
    21 algebra
    22 algebraic algebra
    23 conditions
    24 conjecture
    25 et al
    26 field
    27 free algebras
    28 generalization
    29 group
    30 group G
    31 identity
    32 infinite field
    33 involution
    34 necessary condition
    35 paper
    36 polynomial identities
    37 torsion group
    38 units
    39 schema:name Algebras whose units satisfy a ∗-Laurent polynomial identity
    40 schema:pagination 617-630
    41 schema:productId N6f6e9d6fb62b44eca01e722198ec0bbe
    42 Nccdbce08095040079ccbcb0e6554e461
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142027720
    44 https://doi.org/10.1007/s00013-021-01671-4
    45 schema:sdDatePublished 2022-05-20T07:38
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N1e61c0b3266f47ff8184965225f589f9
    48 schema:url https://doi.org/10.1007/s00013-021-01671-4
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N1e61c0b3266f47ff8184965225f589f9 schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 N379876379f644754936655c5256bdabe schema:volumeNumber 117
    55 rdf:type schema:PublicationVolume
    56 N5bf834db2d5b4acd900e732863735821 rdf:first N82aa312067cf47d883c58a0f3c87a7a5
    57 rdf:rest rdf:nil
    58 N64ffe7019e3949b8b24fa5f2d1bc75f4 rdf:first sg:person.010757014217.74
    59 rdf:rest N5bf834db2d5b4acd900e732863735821
    60 N6f6e9d6fb62b44eca01e722198ec0bbe schema:name dimensions_id
    61 schema:value pub.1142027720
    62 rdf:type schema:PropertyValue
    63 N77c04f457a7d4e338e7762ae77b6a19b schema:issueNumber 6
    64 rdf:type schema:PublicationIssue
    65 N82aa312067cf47d883c58a0f3c87a7a5 schema:affiliation grid-institutes:grid.412265.6
    66 schema:familyName Akbari-Sehat
    67 schema:givenName M.
    68 rdf:type schema:Person
    69 N8f18c2d84e1b497eaef0c1039087c1bf rdf:first sg:person.011437564127.80
    70 rdf:rest N64ffe7019e3949b8b24fa5f2d1bc75f4
    71 Nccdbce08095040079ccbcb0e6554e461 schema:name doi
    72 schema:value 10.1007/s00013-021-01671-4
    73 rdf:type schema:PropertyValue
    74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Mathematical Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Pure Mathematics
    79 rdf:type schema:DefinedTerm
    80 sg:journal.1052783 schema:issn 0003-889X
    81 1420-8938
    82 schema:name Archiv der Mathematik
    83 schema:publisher Springer Nature
    84 rdf:type schema:Periodical
    85 sg:person.010757014217.74 schema:affiliation grid-institutes:grid.444808.4
    86 schema:familyName Bien
    87 schema:givenName M. H.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010757014217.74
    89 rdf:type schema:Person
    90 sg:person.011437564127.80 schema:affiliation grid-institutes:grid.412265.6
    91 schema:familyName Ramezan-Nassab
    92 schema:givenName M.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011437564127.80
    94 rdf:type schema:Person
    95 sg:pub.10.1007/978-1-84996-504-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053419099
    96 https://doi.org/10.1007/978-1-84996-504-0
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/978-94-010-0405-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109716744
    99 https://doi.org/10.1007/978-94-010-0405-3
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/bf01189563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051645831
    102 https://doi.org/10.1007/bf01189563
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/bf02771748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019827293
    105 https://doi.org/10.1007/bf02771748
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/s00013-010-0195-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016665892
    108 https://doi.org/10.1007/s00013-010-0195-0
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/s00013-018-1223-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105760467
    111 https://doi.org/10.1007/s00013-018-1223-8
    112 rdf:type schema:CreativeWork
    113 grid-institutes:grid.412265.6 schema:alternateName Department of Mathematics, Kharazmi University, 50 Taleghani St., Tehran, Iran
    114 schema:name Department of Mathematics, Kharazmi University, 50 Taleghani St., Tehran, Iran
    115 rdf:type schema:Organization
    116 grid-institutes:grid.444808.4 schema:alternateName Vietnam National University, Ho Chi Minh City, Vietnam
    117 schema:name Faculty of Mathematics and Computer Science, University of Science, Ho Chi Minh City, Vietnam
    118 Vietnam National University, Ho Chi Minh City, Vietnam
    119 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...