Ontology type: schema:ScholarlyArticle Open Access: True
2021-12-12
AUTHORSStanisław Sȩdziwy
ABSTRACTA new method for solving the boundary value problems for the second order ODEs with bounded nonlinearities and singular φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}–Laplacians is presented.
PAGES101-111
http://scigraph.springernature.com/pub.10.1007/s00013-021-01666-1
DOIhttp://dx.doi.org/10.1007/s00013-021-01666-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1143825323
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Theoretical Computer Science, Faculty of Mathematics and Computer Science, Jagiellonian University, ul. \u0141ojasiewicza 6, 30-348, Krak\u00f3w, Poland",
"id": "http://www.grid.ac/institutes/grid.5522.0",
"name": [
"Theoretical Computer Science, Faculty of Mathematics and Computer Science, Jagiellonian University, ul. \u0141ojasiewicza 6, 30-348, Krak\u00f3w, Poland"
],
"type": "Organization"
},
"familyName": "S\u0229dziwy",
"givenName": "Stanis\u0142aw",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11784-008-0072-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041411666",
"https://doi.org/10.1007/s11784-008-0072-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00030-007-7004-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045427620",
"https://doi.org/10.1007/s00030-007-7004-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00030-019-0585-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1121091097",
"https://doi.org/10.1007/s00030-019-0585-3"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-12-12",
"datePublishedReg": "2021-12-12",
"description": "A new method for solving the boundary value problems for the second order ODEs with bounded nonlinearities and singular \u03c6\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varphi $$\\end{document}\u2013Laplacians is presented.",
"genre": "article",
"id": "sg:pub.10.1007/s00013-021-01666-1",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1052783",
"issn": [
"0003-889X",
"1420-8938"
],
"name": "Archiv der Mathematik",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "118"
}
],
"keywords": [
"boundary value problem",
"value problem",
"second-order differential equations",
"order differential equations",
"second-order ODEs",
"differential equations",
"order ODEs",
"\u03c6-Laplacian",
"ODEs",
"new method",
"equations",
"problem",
"Laplacian",
"nonlinearity",
"method"
],
"name": "Boundary value problems for second order differential equations with \u03c6-Laplacians",
"pagination": "101-111",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1143825323"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00013-021-01666-1"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00013-021-01666-1",
"https://app.dimensions.ai/details/publication/pub.1143825323"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_903.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00013-021-01666-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01666-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01666-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01666-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01666-1'
This table displays all metadata directly associated to this object as RDF triples.
84 TRIPLES
22 PREDICATES
43 URIs
32 LITERALS
6 BLANK NODES