Boundary value problems for second order differential equations with φ-Laplacians View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-12-12

AUTHORS

Stanisław Sȩdziwy

ABSTRACT

A new method for solving the boundary value problems for the second order ODEs with bounded nonlinearities and singular φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}–Laplacians is presented.

PAGES

101-111

References to SciGraph publications

  • 2008-07-18. Boundary value problems for some nonlinear systems with singular -laplacian in JOURNAL OF FIXED POINT THEORY AND APPLICATIONS
  • 2008-04. Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and ϕ-Laplacian in NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS NODEA
  • 2019-09-18. Periodic solutions to parameter-dependent equations with a ϕ-Laplacian type operator in NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS NODEA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00013-021-01666-1

    DOI

    http://dx.doi.org/10.1007/s00013-021-01666-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1143825323


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Computer Science, Faculty of Mathematics and Computer Science, Jagiellonian University, ul. \u0141ojasiewicza 6, 30-348, Krak\u00f3w, Poland", 
              "id": "http://www.grid.ac/institutes/grid.5522.0", 
              "name": [
                "Theoretical Computer Science, Faculty of Mathematics and Computer Science, Jagiellonian University, ul. \u0141ojasiewicza 6, 30-348, Krak\u00f3w, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "S\u0229dziwy", 
            "givenName": "Stanis\u0142aw", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11784-008-0072-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041411666", 
              "https://doi.org/10.1007/s11784-008-0072-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00030-007-7004-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045427620", 
              "https://doi.org/10.1007/s00030-007-7004-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00030-019-0585-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121091097", 
              "https://doi.org/10.1007/s00030-019-0585-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-12-12", 
        "datePublishedReg": "2021-12-12", 
        "description": "A new method for solving the boundary value problems for the second order ODEs with bounded nonlinearities and singular \u03c6\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varphi $$\\end{document}\u2013Laplacians is presented.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00013-021-01666-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052783", 
            "issn": [
              "0003-889X", 
              "1420-8938"
            ], 
            "name": "Archiv der Mathematik", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "118"
          }
        ], 
        "keywords": [
          "boundary value problem", 
          "value problem", 
          "second-order differential equations", 
          "order differential equations", 
          "second-order ODEs", 
          "differential equations", 
          "order ODEs", 
          "\u03c6-Laplacian", 
          "ODEs", 
          "new method", 
          "equations", 
          "problem", 
          "Laplacian", 
          "nonlinearity", 
          "method"
        ], 
        "name": "Boundary value problems for second order differential equations with \u03c6-Laplacians", 
        "pagination": "101-111", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1143825323"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00013-021-01666-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00013-021-01666-1", 
          "https://app.dimensions.ai/details/publication/pub.1143825323"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_903.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00013-021-01666-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01666-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01666-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01666-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01666-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    84 TRIPLES      22 PREDICATES      43 URIs      32 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00013-021-01666-1 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author Na4dacd74c95c444dbe10da9dd3d95237
    4 schema:citation sg:pub.10.1007/s00030-007-7004-x
    5 sg:pub.10.1007/s00030-019-0585-3
    6 sg:pub.10.1007/s11784-008-0072-7
    7 schema:datePublished 2021-12-12
    8 schema:datePublishedReg 2021-12-12
    9 schema:description A new method for solving the boundary value problems for the second order ODEs with bounded nonlinearities and singular φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}–Laplacians is presented.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N10da4182aa9b4f3d9c5d1f95bf82297e
    14 N354a349692ff45f08a46d774f92be364
    15 sg:journal.1052783
    16 schema:keywords Laplacian
    17 ODEs
    18 boundary value problem
    19 differential equations
    20 equations
    21 method
    22 new method
    23 nonlinearity
    24 order ODEs
    25 order differential equations
    26 problem
    27 second-order ODEs
    28 second-order differential equations
    29 value problem
    30 φ-Laplacian
    31 schema:name Boundary value problems for second order differential equations with φ-Laplacians
    32 schema:pagination 101-111
    33 schema:productId N0c090aa9375541e8a5285360ab7c91cd
    34 Nc6dce6eb59c849ecb90b418362c6612a
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143825323
    36 https://doi.org/10.1007/s00013-021-01666-1
    37 schema:sdDatePublished 2022-05-20T07:39
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher N46c0282df27947f98dcc38404945d3c8
    40 schema:url https://doi.org/10.1007/s00013-021-01666-1
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N0c090aa9375541e8a5285360ab7c91cd schema:name doi
    45 schema:value 10.1007/s00013-021-01666-1
    46 rdf:type schema:PropertyValue
    47 N10da4182aa9b4f3d9c5d1f95bf82297e schema:volumeNumber 118
    48 rdf:type schema:PublicationVolume
    49 N169cf868842b4043956fb624d7021565 schema:affiliation grid-institutes:grid.5522.0
    50 schema:familyName Sȩdziwy
    51 schema:givenName Stanisław
    52 rdf:type schema:Person
    53 N354a349692ff45f08a46d774f92be364 schema:issueNumber 1
    54 rdf:type schema:PublicationIssue
    55 N46c0282df27947f98dcc38404945d3c8 schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 Na4dacd74c95c444dbe10da9dd3d95237 rdf:first N169cf868842b4043956fb624d7021565
    58 rdf:rest rdf:nil
    59 Nc6dce6eb59c849ecb90b418362c6612a schema:name dimensions_id
    60 schema:value pub.1143825323
    61 rdf:type schema:PropertyValue
    62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Mathematical Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Numerical and Computational Mathematics
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1052783 schema:issn 0003-889X
    69 1420-8938
    70 schema:name Archiv der Mathematik
    71 schema:publisher Springer Nature
    72 rdf:type schema:Periodical
    73 sg:pub.10.1007/s00030-007-7004-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045427620
    74 https://doi.org/10.1007/s00030-007-7004-x
    75 rdf:type schema:CreativeWork
    76 sg:pub.10.1007/s00030-019-0585-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121091097
    77 https://doi.org/10.1007/s00030-019-0585-3
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/s11784-008-0072-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041411666
    80 https://doi.org/10.1007/s11784-008-0072-7
    81 rdf:type schema:CreativeWork
    82 grid-institutes:grid.5522.0 schema:alternateName Theoretical Computer Science, Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Łojasiewicza 6, 30-348, Kraków, Poland
    83 schema:name Theoretical Computer Science, Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Łojasiewicza 6, 30-348, Kraków, Poland
    84 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...