Szasz’s theorem and its generalizations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-12

AUTHORS

Gérard Bourdaud

ABSTRACT

We establish the most general Szasz type estimates for homogeneous Besov and Lizorkin-Triebel spaces, and their realizations.

PAGES

79-90

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00013-021-01664-3

DOI

http://dx.doi.org/10.1007/s00013-021-01664-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141821677


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Paris, I.M.J. - P.R.G (UMR 7586), B\u00e2timent Sophie Germain Case 7012, 75205, Paris Cedex 13, France", 
          "id": "http://www.grid.ac/institutes/grid.508487.6", 
          "name": [
            "Universit\u00e9 de Paris, I.M.J. - P.R.G (UMR 7586), B\u00e2timent Sophie Germain Case 7012, 75205, Paris Cedex 13, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bourdaud", 
        "givenName": "G\u00e9rard", 
        "id": "sg:person.012041514637.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012041514637.54"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-10-12", 
    "datePublishedReg": "2021-10-12", 
    "description": "We establish the most general Szasz type estimates for homogeneous Besov and Lizorkin-Triebel spaces, and their realizations.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00013-021-01664-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052783", 
        "issn": [
          "0003-889X", 
          "1420-8938"
        ], 
        "name": "Archiv der Mathematik", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "118"
      }
    ], 
    "keywords": [
      "Lizorkin\u2013Triebel spaces", 
      "type estimates", 
      "homogeneous Besov", 
      "theorem", 
      "estimates", 
      "Besov", 
      "generalization", 
      "space", 
      "realization"
    ], 
    "name": "Szasz\u2019s theorem and its generalizations", 
    "pagination": "79-90", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141821677"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00013-021-01664-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00013-021-01664-3", 
      "https://app.dimensions.ai/details/publication/pub.1141821677"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_889.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00013-021-01664-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01664-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01664-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01664-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01664-3'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      21 PREDICATES      34 URIs      26 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00013-021-01664-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ndb2f3dd553dc445abe51bed64058442a
4 schema:datePublished 2021-10-12
5 schema:datePublishedReg 2021-10-12
6 schema:description We establish the most general Szasz type estimates for homogeneous Besov and Lizorkin-Triebel spaces, and their realizations.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N499f7ac448b84239ab80dbc51572371b
11 N8c57d9ce9148424db7d91b811b9131b5
12 sg:journal.1052783
13 schema:keywords Besov
14 Lizorkin–Triebel spaces
15 estimates
16 generalization
17 homogeneous Besov
18 realization
19 space
20 theorem
21 type estimates
22 schema:name Szasz’s theorem and its generalizations
23 schema:pagination 79-90
24 schema:productId N4254d26443a74362bb18f72040472b89
25 N4509e233c4b34874bd5bf26fddd382af
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141821677
27 https://doi.org/10.1007/s00013-021-01664-3
28 schema:sdDatePublished 2022-05-20T07:37
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N9095292fb1c548138c246a6ffcb56cc2
31 schema:url https://doi.org/10.1007/s00013-021-01664-3
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N4254d26443a74362bb18f72040472b89 schema:name doi
36 schema:value 10.1007/s00013-021-01664-3
37 rdf:type schema:PropertyValue
38 N4509e233c4b34874bd5bf26fddd382af schema:name dimensions_id
39 schema:value pub.1141821677
40 rdf:type schema:PropertyValue
41 N499f7ac448b84239ab80dbc51572371b schema:volumeNumber 118
42 rdf:type schema:PublicationVolume
43 N8c57d9ce9148424db7d91b811b9131b5 schema:issueNumber 1
44 rdf:type schema:PublicationIssue
45 N9095292fb1c548138c246a6ffcb56cc2 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 Ndb2f3dd553dc445abe51bed64058442a rdf:first sg:person.012041514637.54
48 rdf:rest rdf:nil
49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
50 schema:name Mathematical Sciences
51 rdf:type schema:DefinedTerm
52 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
53 schema:name Pure Mathematics
54 rdf:type schema:DefinedTerm
55 sg:journal.1052783 schema:issn 0003-889X
56 1420-8938
57 schema:name Archiv der Mathematik
58 schema:publisher Springer Nature
59 rdf:type schema:Periodical
60 sg:person.012041514637.54 schema:affiliation grid-institutes:grid.508487.6
61 schema:familyName Bourdaud
62 schema:givenName Gérard
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012041514637.54
64 rdf:type schema:Person
65 grid-institutes:grid.508487.6 schema:alternateName Université de Paris, I.M.J. - P.R.G (UMR 7586), Bâtiment Sophie Germain Case 7012, 75205, Paris Cedex 13, France
66 schema:name Université de Paris, I.M.J. - P.R.G (UMR 7586), Bâtiment Sophie Germain Case 7012, 75205, Paris Cedex 13, France
67 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...