Ontology type: schema:ScholarlyArticle Open Access: True
2021-10-13
AUTHORSNouhayla Ait Oussaid, Khalid Akhlil, Sultana Ben Aadi, Mourad El Ouali
ABSTRACTIn this paper, we prove that it is always possible to define a realization of the Laplacian Δκ,θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\kappa ,\theta }$$\end{document} on L2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\Omega )$$\end{document} subject to nonlocal Robin boundary conditions with general jump measures on arbitrary open subsets of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}. This is made possible by using a capacity approach to define an admissible pair of measures (κ,θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\kappa ,\theta )$$\end{document} that allows the associated form Eκ,θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}_{\kappa ,\theta }$$\end{document} to be closable. The nonlocal Robin Laplacian Δκ,θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\kappa ,\theta }$$\end{document} generates a sub-Markovian C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0$$\end{document}-semigroup on L2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\Omega )$$\end{document} which is not dominated by the Neumann Laplacian semigroup unless the jump measure θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} vanishes. More... »
PAGES675-686
http://scigraph.springernature.com/pub.10.1007/s00013-021-01663-4
DOIhttp://dx.doi.org/10.1007/s00013-021-01663-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1141849660
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Departement of Mathematics and Management, Polydisciplinary Faculty of Ouarzazate, Ibno Zohr University, Agadir, Morocco",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Departement of Mathematics and Management, Polydisciplinary Faculty of Ouarzazate, Ibno Zohr University, Agadir, Morocco"
],
"type": "Organization"
},
"familyName": "Oussaid",
"givenName": "Nouhayla Ait",
"id": "sg:person.012070531465.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012070531465.77"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Departement of Mathematics and Management, Polydisciplinary Faculty of Ouarzazate, Ibno Zohr University, Agadir, Morocco",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Departement of Mathematics and Management, Polydisciplinary Faculty of Ouarzazate, Ibno Zohr University, Agadir, Morocco"
],
"type": "Organization"
},
"familyName": "Akhlil",
"givenName": "Khalid",
"id": "sg:person.07515673402.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07515673402.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Departement of Mathematics and Management, Polydisciplinary Faculty of Ouarzazate, Ibno Zohr University, Agadir, Morocco",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Departement of Mathematics and Management, Polydisciplinary Faculty of Ouarzazate, Ibno Zohr University, Agadir, Morocco"
],
"type": "Organization"
},
"familyName": "Aadi",
"givenName": "Sultana Ben",
"id": "sg:person.011262160637.81",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011262160637.81"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Research Group Discrete Optimization, Department of Computer Science, CAU Kiel, Kiel, Germany",
"id": "http://www.grid.ac/institutes/grid.9764.c",
"name": [
"Research Group Discrete Optimization, Department of Computer Science, CAU Kiel, Kiel, Germany"
],
"type": "Organization"
},
"familyName": "Ouali",
"givenName": "Mourad El",
"id": "sg:person.010247516133.66",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010247516133.66"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s000280300005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003210141",
"https://doi.org/10.1007/s000280300005"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00028-020-00567-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1125662213",
"https://doi.org/10.1007/s00028-020-00567-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01049296",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051594994",
"https://doi.org/10.1007/bf01049296"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00275797",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034387624",
"https://doi.org/10.1007/bf00275797"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00025-018-0822-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103180330",
"https://doi.org/10.1007/s00025-018-0822-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1024181608863",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012281434",
"https://doi.org/10.1023/a:1024181608863"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-10-13",
"datePublishedReg": "2021-10-13",
"description": "In this paper, we prove that it is always possible to define a realization of the Laplacian \u0394\u03ba,\u03b8\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Delta _{\\kappa ,\\theta }$$\\end{document} on L2(\u03a9)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$L^2(\\Omega )$$\\end{document} subject to nonlocal Robin boundary conditions with general jump measures on arbitrary open subsets of RN\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathbb {R}}^N$$\\end{document}. This is made possible by using a capacity approach to define an admissible pair of measures (\u03ba,\u03b8)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(\\kappa ,\\theta )$$\\end{document} that allows the associated form E\u03ba,\u03b8\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {E}}_{\\kappa ,\\theta }$$\\end{document} to be closable. The nonlocal Robin Laplacian \u0394\u03ba,\u03b8\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Delta _{\\kappa ,\\theta }$$\\end{document} generates a sub-Markovian C0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$C_0$$\\end{document}-semigroup on L2(\u03a9)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$L^2(\\Omega )$$\\end{document} which is not dominated by the Neumann Laplacian semigroup unless the jump measure \u03b8\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\theta $$\\end{document} vanishes.",
"genre": "article",
"id": "sg:pub.10.1007/s00013-021-01663-4",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1052783",
"issn": [
"0003-889X",
"1420-8938"
],
"name": "Archiv der Mathematik",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "117"
}
],
"keywords": [
"measures",
"subset",
"jump measure",
"conditions",
"approach",
"domain",
"pairs",
"\u0394\u03ba",
"arbitrary open subset",
"open subset",
"Robin Laplacian",
"paper",
"capacity approach",
"E\u03ba",
"realization",
"Robin boundary conditions",
"boundary conditions",
"admissible pairs",
"semigroups",
"Laplacian",
"arbitrary domains",
"nonlocal Robin boundary conditions"
],
"name": "Generalized nonlocal Robin Laplacian on arbitrary domains",
"pagination": "675-686",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1141849660"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00013-021-01663-4"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00013-021-01663-4",
"https://app.dimensions.ai/details/publication/pub.1141849660"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_898.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00013-021-01663-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01663-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01663-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01663-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01663-4'
This table displays all metadata directly associated to this object as RDF triples.
128 TRIPLES
22 PREDICATES
53 URIs
39 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00013-021-01663-4 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | Na0e2f06234294fb49358465b81e31598 |
4 | ″ | schema:citation | sg:pub.10.1007/bf00275797 |
5 | ″ | ″ | sg:pub.10.1007/bf01049296 |
6 | ″ | ″ | sg:pub.10.1007/s00025-018-0822-9 |
7 | ″ | ″ | sg:pub.10.1007/s00028-020-00567-0 |
8 | ″ | ″ | sg:pub.10.1007/s000280300005 |
9 | ″ | ″ | sg:pub.10.1023/a:1024181608863 |
10 | ″ | schema:datePublished | 2021-10-13 |
11 | ″ | schema:datePublishedReg | 2021-10-13 |
12 | ″ | schema:description | In this paper, we prove that it is always possible to define a realization of the Laplacian Δκ,θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\kappa ,\theta }$$\end{document} on L2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\Omega )$$\end{document} subject to nonlocal Robin boundary conditions with general jump measures on arbitrary open subsets of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}. This is made possible by using a capacity approach to define an admissible pair of measures (κ,θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\kappa ,\theta )$$\end{document} that allows the associated form Eκ,θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}_{\kappa ,\theta }$$\end{document} to be closable. The nonlocal Robin Laplacian Δκ,θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\kappa ,\theta }$$\end{document} generates a sub-Markovian C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0$$\end{document}-semigroup on L2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\Omega )$$\end{document} which is not dominated by the Neumann Laplacian semigroup unless the jump measure θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} vanishes. |
13 | ″ | schema:genre | article |
14 | ″ | schema:inLanguage | en |
15 | ″ | schema:isAccessibleForFree | true |
16 | ″ | schema:isPartOf | N03e37ffff1a748d0b333d89b540b0328 |
17 | ″ | ″ | N258681f0eb8340c2bc9d8a4a47d68fd7 |
18 | ″ | ″ | sg:journal.1052783 |
19 | ″ | schema:keywords | Eκ |
20 | ″ | ″ | Laplacian |
21 | ″ | ″ | Robin Laplacian |
22 | ″ | ″ | Robin boundary conditions |
23 | ″ | ″ | admissible pairs |
24 | ″ | ″ | approach |
25 | ″ | ″ | arbitrary domains |
26 | ″ | ″ | arbitrary open subset |
27 | ″ | ″ | boundary conditions |
28 | ″ | ″ | capacity approach |
29 | ″ | ″ | conditions |
30 | ″ | ″ | domain |
31 | ″ | ″ | jump measure |
32 | ″ | ″ | measures |
33 | ″ | ″ | nonlocal Robin boundary conditions |
34 | ″ | ″ | open subset |
35 | ″ | ″ | pairs |
36 | ″ | ″ | paper |
37 | ″ | ″ | realization |
38 | ″ | ″ | semigroups |
39 | ″ | ″ | subset |
40 | ″ | ″ | Δκ |
41 | ″ | schema:name | Generalized nonlocal Robin Laplacian on arbitrary domains |
42 | ″ | schema:pagination | 675-686 |
43 | ″ | schema:productId | N7223f9b6dd904955858ca590f1ed6ae7 |
44 | ″ | ″ | N9556be5099784bf79afc5951e56aa157 |
45 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1141849660 |
46 | ″ | ″ | https://doi.org/10.1007/s00013-021-01663-4 |
47 | ″ | schema:sdDatePublished | 2022-05-20T07:39 |
48 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
49 | ″ | schema:sdPublisher | N4d790e7d5b9840089e997f226c27b61a |
50 | ″ | schema:url | https://doi.org/10.1007/s00013-021-01663-4 |
51 | ″ | sgo:license | sg:explorer/license/ |
52 | ″ | sgo:sdDataset | articles |
53 | ″ | rdf:type | schema:ScholarlyArticle |
54 | N03e37ffff1a748d0b333d89b540b0328 | schema:volumeNumber | 117 |
55 | ″ | rdf:type | schema:PublicationVolume |
56 | N258681f0eb8340c2bc9d8a4a47d68fd7 | schema:issueNumber | 6 |
57 | ″ | rdf:type | schema:PublicationIssue |
58 | N49f24bc3db52452ba25ee3f1775cf31b | rdf:first | sg:person.07515673402.42 |
59 | ″ | rdf:rest | N6627ba2eeb7d4015a437fb8f9faa2b18 |
60 | N4d790e7d5b9840089e997f226c27b61a | schema:name | Springer Nature - SN SciGraph project |
61 | ″ | rdf:type | schema:Organization |
62 | N6627ba2eeb7d4015a437fb8f9faa2b18 | rdf:first | sg:person.011262160637.81 |
63 | ″ | rdf:rest | Nca523d739a1e4c79a9314c2e9d691443 |
64 | N7223f9b6dd904955858ca590f1ed6ae7 | schema:name | doi |
65 | ″ | schema:value | 10.1007/s00013-021-01663-4 |
66 | ″ | rdf:type | schema:PropertyValue |
67 | N9556be5099784bf79afc5951e56aa157 | schema:name | dimensions_id |
68 | ″ | schema:value | pub.1141849660 |
69 | ″ | rdf:type | schema:PropertyValue |
70 | Na0e2f06234294fb49358465b81e31598 | rdf:first | sg:person.012070531465.77 |
71 | ″ | rdf:rest | N49f24bc3db52452ba25ee3f1775cf31b |
72 | Nca523d739a1e4c79a9314c2e9d691443 | rdf:first | sg:person.010247516133.66 |
73 | ″ | rdf:rest | rdf:nil |
74 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
75 | ″ | schema:name | Mathematical Sciences |
76 | ″ | rdf:type | schema:DefinedTerm |
77 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
78 | ″ | schema:name | Pure Mathematics |
79 | ″ | rdf:type | schema:DefinedTerm |
80 | sg:journal.1052783 | schema:issn | 0003-889X |
81 | ″ | ″ | 1420-8938 |
82 | ″ | schema:name | Archiv der Mathematik |
83 | ″ | schema:publisher | Springer Nature |
84 | ″ | rdf:type | schema:Periodical |
85 | sg:person.010247516133.66 | schema:affiliation | grid-institutes:grid.9764.c |
86 | ″ | schema:familyName | Ouali |
87 | ″ | schema:givenName | Mourad El |
88 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010247516133.66 |
89 | ″ | rdf:type | schema:Person |
90 | sg:person.011262160637.81 | schema:affiliation | grid-institutes:None |
91 | ″ | schema:familyName | Aadi |
92 | ″ | schema:givenName | Sultana Ben |
93 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011262160637.81 |
94 | ″ | rdf:type | schema:Person |
95 | sg:person.012070531465.77 | schema:affiliation | grid-institutes:None |
96 | ″ | schema:familyName | Oussaid |
97 | ″ | schema:givenName | Nouhayla Ait |
98 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012070531465.77 |
99 | ″ | rdf:type | schema:Person |
100 | sg:person.07515673402.42 | schema:affiliation | grid-institutes:None |
101 | ″ | schema:familyName | Akhlil |
102 | ″ | schema:givenName | Khalid |
103 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07515673402.42 |
104 | ″ | rdf:type | schema:Person |
105 | sg:pub.10.1007/bf00275797 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1034387624 |
106 | ″ | ″ | https://doi.org/10.1007/bf00275797 |
107 | ″ | rdf:type | schema:CreativeWork |
108 | sg:pub.10.1007/bf01049296 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1051594994 |
109 | ″ | ″ | https://doi.org/10.1007/bf01049296 |
110 | ″ | rdf:type | schema:CreativeWork |
111 | sg:pub.10.1007/s00025-018-0822-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1103180330 |
112 | ″ | ″ | https://doi.org/10.1007/s00025-018-0822-9 |
113 | ″ | rdf:type | schema:CreativeWork |
114 | sg:pub.10.1007/s00028-020-00567-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1125662213 |
115 | ″ | ″ | https://doi.org/10.1007/s00028-020-00567-0 |
116 | ″ | rdf:type | schema:CreativeWork |
117 | sg:pub.10.1007/s000280300005 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003210141 |
118 | ″ | ″ | https://doi.org/10.1007/s000280300005 |
119 | ″ | rdf:type | schema:CreativeWork |
120 | sg:pub.10.1023/a:1024181608863 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012281434 |
121 | ″ | ″ | https://doi.org/10.1023/a:1024181608863 |
122 | ″ | rdf:type | schema:CreativeWork |
123 | grid-institutes:None | schema:alternateName | Departement of Mathematics and Management, Polydisciplinary Faculty of Ouarzazate, Ibno Zohr University, Agadir, Morocco |
124 | ″ | schema:name | Departement of Mathematics and Management, Polydisciplinary Faculty of Ouarzazate, Ibno Zohr University, Agadir, Morocco |
125 | ″ | rdf:type | schema:Organization |
126 | grid-institutes:grid.9764.c | schema:alternateName | Research Group Discrete Optimization, Department of Computer Science, CAU Kiel, Kiel, Germany |
127 | ″ | schema:name | Research Group Discrete Optimization, Department of Computer Science, CAU Kiel, Kiel, Germany |
128 | ″ | rdf:type | schema:Organization |