Some remarks on small values of τ(n) View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-19

AUTHORS

Kaya Lakein, Anne Larsen

ABSTRACT

A natural variant of Lehmer’s conjecture that the Ramanujan τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-function never vanishes asks whether, for any given integer α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, there exist any n∈Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \in \mathbb {Z}^+$$\end{document} such that τ(n)=α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n) = \alpha $$\end{document}. A series of recent papers excludes many integers as possible values of the τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-function using the theory of primitive divisors of Lucas numbers, computations of integer points on curves, and congruences for τ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n)$$\end{document}. We synthesize these results and methods to prove that if 0<α<100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \left| \alpha \right| < 100$$\end{document} and α∉T:={2k,-24,-48,-70,-90,92,-96}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \notin T := \{2^k, -24,-48, -70,-90, 92, -96\}$$\end{document}, then τ(n)≠α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n) \ne \alpha $$\end{document} for all n>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n > 1$$\end{document}. Moreover, if α∈T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in T$$\end{document} and τ(n)=α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n) = \alpha $$\end{document}, then n is square-free with prescribed prime factorization. Finally, we show that a strong form of the Atkin-Serre conjecture implies that τ(n)>100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| \tau (n) \right| > 100$$\end{document} for all n>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n > 2$$\end{document}. More... »

PAGES

635-645

References to SciGraph publications

  • 1974-12. La conjecture de Weil. I in PUBLICATIONS MATHÉMATIQUES DE L'IHÉS
  • 1973-01-01. On ℓ-ADIC Representations and Congruences for Coefficients of Modular Forms in MODULAR FUNCTIONS OF ONE VARIABLE III
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 1980-12. La Conjecture de Weil. II in PUBLICATIONS MATHÉMATIQUES DE L'IHÉS
  • 2021-04-19. Almost all primes satisfy the Atkin–Serre conjecture and are not extremal in RESEARCH IN NUMBER THEORY
  • 2021-08-09. Odd values of the Ramanujan tau function in MATHEMATISCHE ANNALEN
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00013-021-01661-6

    DOI

    http://dx.doi.org/10.1007/s00013-021-01661-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141997167


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Stanford University, 94305, Stanford, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Mathematics, Stanford University, 94305, Stanford, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lakein", 
            "givenName": "Kaya", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Harvard University, 02138, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Mathematics, Harvard University, 02138, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Larsen", 
            "givenName": "Anne", 
            "id": "sg:person.014442414121.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014442414121.98"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02684780", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051562332", 
              "https://doi.org/10.1007/bf02684780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40993-021-00258-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1137309525", 
              "https://doi.org/10.1007/s40993-021-00258-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00208-021-02241-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1140292481", 
              "https://doi.org/10.1007/s00208-021-02241-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02684373", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011553118", 
              "https://doi.org/10.1007/bf02684373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11139-012-9420-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046786012", 
              "https://doi.org/10.1007/s11139-012-9420-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-37802-0_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047476460", 
              "https://doi.org/10.1007/978-3-540-37802-0_1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-10-19", 
        "datePublishedReg": "2021-10-19", 
        "description": "A natural variant of Lehmer\u2019s conjecture that the Ramanujan \u03c4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tau $$\\end{document}-function never vanishes asks whether, for any given integer \u03b1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha $$\\end{document}, there exist any n\u2208Z+\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n \\in \\mathbb {Z}^+$$\\end{document} such that \u03c4(n)=\u03b1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tau (n) = \\alpha $$\\end{document}. A series of recent papers excludes many integers as possible values of the \u03c4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tau $$\\end{document}-function using the theory of primitive divisors of Lucas numbers, computations of integer points on curves, and congruences for \u03c4(n)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tau (n)$$\\end{document}. We synthesize these results and methods to prove that if 0<\u03b1<100\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$0< \\left| \\alpha \\right| < 100$$\\end{document} and \u03b1\u2209T:={2k,-24,-48,-70,-90,92,-96}\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha \\notin T := \\{2^k, -24,-48, -70,-90, 92, -96\\}$$\\end{document}, then \u03c4(n)\u2260\u03b1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tau (n) \\ne \\alpha $$\\end{document} for all n>1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n > 1$$\\end{document}. Moreover, if \u03b1\u2208T\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha \\in T$$\\end{document} and \u03c4(n)=\u03b1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tau (n) = \\alpha $$\\end{document}, then n is square-free with prescribed prime factorization. Finally, we show that a strong form of the Atkin-Serre conjecture implies that \u03c4(n)>100\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\left| \\tau (n) \\right| > 100$$\\end{document} for all n>2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n > 2$$\\end{document}.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00013-021-01661-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8675119", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052783", 
            "issn": [
              "0003-889X", 
              "1420-8938"
            ], 
            "name": "Archiv der Mathematik", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "117"
          }
        ], 
        "keywords": [
          "function", 
          "natural variants", 
          "variants", 
          "values", 
          "number", 
          "curves", 
          "series", 
          "results", 
          "form", 
          "point", 
          "method", 
          "Lucas numbers", 
          "congruence", 
          "possible values", 
          "recent paper", 
          "Lehmer's conjecture", 
          "remarks", 
          "paper", 
          "small values", 
          "theory", 
          "Ramanujan", 
          "conjecture", 
          "prime factorization", 
          "strong form", 
          "integers", 
          "integer points", 
          "divisors", 
          "computation", 
          "factorization", 
          "primitive divisors"
        ], 
        "name": "Some remarks on small values of \u03c4(n)", 
        "pagination": "635-645", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141997167"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00013-021-01661-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00013-021-01661-6", 
          "https://app.dimensions.ai/details/publication/pub.1141997167"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_875.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00013-021-01661-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01661-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01661-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01661-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01661-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    123 TRIPLES      22 PREDICATES      61 URIs      47 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00013-021-01661-6 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N272249fb593d43828d5e91494f187937
    4 schema:citation sg:pub.10.1007/978-3-540-37802-0_1
    5 sg:pub.10.1007/bf02684373
    6 sg:pub.10.1007/bf02684780
    7 sg:pub.10.1007/s00208-021-02241-3
    8 sg:pub.10.1007/s11139-012-9420-8
    9 sg:pub.10.1007/s40993-021-00258-w
    10 schema:datePublished 2021-10-19
    11 schema:datePublishedReg 2021-10-19
    12 schema:description A natural variant of Lehmer’s conjecture that the Ramanujan τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-function never vanishes asks whether, for any given integer α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, there exist any n∈Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \in \mathbb {Z}^+$$\end{document} such that τ(n)=α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n) = \alpha $$\end{document}. A series of recent papers excludes many integers as possible values of the τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-function using the theory of primitive divisors of Lucas numbers, computations of integer points on curves, and congruences for τ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n)$$\end{document}. We synthesize these results and methods to prove that if 0<α<100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \left| \alpha \right| < 100$$\end{document} and α∉T:={2k,-24,-48,-70,-90,92,-96}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \notin T := \{2^k, -24,-48, -70,-90, 92, -96\}$$\end{document}, then τ(n)≠α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n) \ne \alpha $$\end{document} for all n>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n > 1$$\end{document}. Moreover, if α∈T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in T$$\end{document} and τ(n)=α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n) = \alpha $$\end{document}, then n is square-free with prescribed prime factorization. Finally, we show that a strong form of the Atkin-Serre conjecture implies that τ(n)>100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| \tau (n) \right| > 100$$\end{document} for all n>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n > 2$$\end{document}.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree true
    16 schema:isPartOf N07938eea20a247509f3d0b0acb120528
    17 Nab6d103fd0aa4b10a37c629146f5a710
    18 sg:journal.1052783
    19 schema:keywords Lehmer's conjecture
    20 Lucas numbers
    21 Ramanujan
    22 computation
    23 congruence
    24 conjecture
    25 curves
    26 divisors
    27 factorization
    28 form
    29 function
    30 integer points
    31 integers
    32 method
    33 natural variants
    34 number
    35 paper
    36 point
    37 possible values
    38 prime factorization
    39 primitive divisors
    40 recent paper
    41 remarks
    42 results
    43 series
    44 small values
    45 strong form
    46 theory
    47 values
    48 variants
    49 schema:name Some remarks on small values of τ(n)
    50 schema:pagination 635-645
    51 schema:productId Nca3b5b9d194f47848dc5af707b08de87
    52 Nedd08f6a05f4409fbfc6dbf3b5db343a
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141997167
    54 https://doi.org/10.1007/s00013-021-01661-6
    55 schema:sdDatePublished 2022-05-20T07:38
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N368c9fb76c7343659b309c5c5e5ffcf1
    58 schema:url https://doi.org/10.1007/s00013-021-01661-6
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N07938eea20a247509f3d0b0acb120528 schema:volumeNumber 117
    63 rdf:type schema:PublicationVolume
    64 N169f3196c24b4f29982ca0ac3c9dfdf1 rdf:first sg:person.014442414121.98
    65 rdf:rest rdf:nil
    66 N272249fb593d43828d5e91494f187937 rdf:first Nab55513dc14b4994bc6c11b8735ed58d
    67 rdf:rest N169f3196c24b4f29982ca0ac3c9dfdf1
    68 N368c9fb76c7343659b309c5c5e5ffcf1 schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 Nab55513dc14b4994bc6c11b8735ed58d schema:affiliation grid-institutes:grid.168010.e
    71 schema:familyName Lakein
    72 schema:givenName Kaya
    73 rdf:type schema:Person
    74 Nab6d103fd0aa4b10a37c629146f5a710 schema:issueNumber 6
    75 rdf:type schema:PublicationIssue
    76 Nca3b5b9d194f47848dc5af707b08de87 schema:name dimensions_id
    77 schema:value pub.1141997167
    78 rdf:type schema:PropertyValue
    79 Nedd08f6a05f4409fbfc6dbf3b5db343a schema:name doi
    80 schema:value 10.1007/s00013-021-01661-6
    81 rdf:type schema:PropertyValue
    82 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Mathematical Sciences
    84 rdf:type schema:DefinedTerm
    85 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Pure Mathematics
    87 rdf:type schema:DefinedTerm
    88 sg:grant.8675119 http://pending.schema.org/fundedItem sg:pub.10.1007/s00013-021-01661-6
    89 rdf:type schema:MonetaryGrant
    90 sg:journal.1052783 schema:issn 0003-889X
    91 1420-8938
    92 schema:name Archiv der Mathematik
    93 schema:publisher Springer Nature
    94 rdf:type schema:Periodical
    95 sg:person.014442414121.98 schema:affiliation grid-institutes:grid.38142.3c
    96 schema:familyName Larsen
    97 schema:givenName Anne
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014442414121.98
    99 rdf:type schema:Person
    100 sg:pub.10.1007/978-3-540-37802-0_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047476460
    101 https://doi.org/10.1007/978-3-540-37802-0_1
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/bf02684373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011553118
    104 https://doi.org/10.1007/bf02684373
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/bf02684780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051562332
    107 https://doi.org/10.1007/bf02684780
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s00208-021-02241-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140292481
    110 https://doi.org/10.1007/s00208-021-02241-3
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/s11139-012-9420-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046786012
    113 https://doi.org/10.1007/s11139-012-9420-8
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/s40993-021-00258-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1137309525
    116 https://doi.org/10.1007/s40993-021-00258-w
    117 rdf:type schema:CreativeWork
    118 grid-institutes:grid.168010.e schema:alternateName Department of Mathematics, Stanford University, 94305, Stanford, CA, USA
    119 schema:name Department of Mathematics, Stanford University, 94305, Stanford, CA, USA
    120 rdf:type schema:Organization
    121 grid-institutes:grid.38142.3c schema:alternateName Department of Mathematics, Harvard University, 02138, Cambridge, MA, USA
    122 schema:name Department of Mathematics, Harvard University, 02138, Cambridge, MA, USA
    123 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...