Ontology type: schema:ScholarlyArticle Open Access: True
2021-10-19
AUTHORSKaya Lakein, Anne Larsen
ABSTRACTA natural variant of Lehmer’s conjecture that the Ramanujan τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-function never vanishes asks whether, for any given integer α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, there exist any n∈Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \in \mathbb {Z}^+$$\end{document} such that τ(n)=α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n) = \alpha $$\end{document}. A series of recent papers excludes many integers as possible values of the τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-function using the theory of primitive divisors of Lucas numbers, computations of integer points on curves, and congruences for τ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n)$$\end{document}. We synthesize these results and methods to prove that if 0<α<100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \left| \alpha \right| < 100$$\end{document} and α∉T:={2k,-24,-48,-70,-90,92,-96}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \notin T := \{2^k, -24,-48, -70,-90, 92, -96\}$$\end{document}, then τ(n)≠α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n) \ne \alpha $$\end{document} for all n>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n > 1$$\end{document}. Moreover, if α∈T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in T$$\end{document} and τ(n)=α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n) = \alpha $$\end{document}, then n is square-free with prescribed prime factorization. Finally, we show that a strong form of the Atkin-Serre conjecture implies that τ(n)>100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| \tau (n) \right| > 100$$\end{document} for all n>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n > 2$$\end{document}. More... »
PAGES635-645
http://scigraph.springernature.com/pub.10.1007/s00013-021-01661-6
DOIhttp://dx.doi.org/10.1007/s00013-021-01661-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1141997167
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Stanford University, 94305, Stanford, CA, USA",
"id": "http://www.grid.ac/institutes/grid.168010.e",
"name": [
"Department of Mathematics, Stanford University, 94305, Stanford, CA, USA"
],
"type": "Organization"
},
"familyName": "Lakein",
"givenName": "Kaya",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Harvard University, 02138, Cambridge, MA, USA",
"id": "http://www.grid.ac/institutes/grid.38142.3c",
"name": [
"Department of Mathematics, Harvard University, 02138, Cambridge, MA, USA"
],
"type": "Organization"
},
"familyName": "Larsen",
"givenName": "Anne",
"id": "sg:person.014442414121.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014442414121.98"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02684780",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051562332",
"https://doi.org/10.1007/bf02684780"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40993-021-00258-w",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1137309525",
"https://doi.org/10.1007/s40993-021-00258-w"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00208-021-02241-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1140292481",
"https://doi.org/10.1007/s00208-021-02241-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02684373",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011553118",
"https://doi.org/10.1007/bf02684373"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11139-012-9420-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046786012",
"https://doi.org/10.1007/s11139-012-9420-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-37802-0_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047476460",
"https://doi.org/10.1007/978-3-540-37802-0_1"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-10-19",
"datePublishedReg": "2021-10-19",
"description": "A natural variant of Lehmer\u2019s conjecture that the Ramanujan \u03c4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tau $$\\end{document}-function never vanishes asks whether, for any given integer \u03b1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha $$\\end{document}, there exist any n\u2208Z+\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n \\in \\mathbb {Z}^+$$\\end{document} such that \u03c4(n)=\u03b1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tau (n) = \\alpha $$\\end{document}. A series of recent papers excludes many integers as possible values of the \u03c4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tau $$\\end{document}-function using the theory of primitive divisors of Lucas numbers, computations of integer points on curves, and congruences for \u03c4(n)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tau (n)$$\\end{document}. We synthesize these results and methods to prove that if 0<\u03b1<100\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$0< \\left| \\alpha \\right| < 100$$\\end{document} and \u03b1\u2209T:={2k,-24,-48,-70,-90,92,-96}\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha \\notin T := \\{2^k, -24,-48, -70,-90, 92, -96\\}$$\\end{document}, then \u03c4(n)\u2260\u03b1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tau (n) \\ne \\alpha $$\\end{document} for all n>1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n > 1$$\\end{document}. Moreover, if \u03b1\u2208T\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha \\in T$$\\end{document} and \u03c4(n)=\u03b1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tau (n) = \\alpha $$\\end{document}, then n is square-free with prescribed prime factorization. Finally, we show that a strong form of the Atkin-Serre conjecture implies that \u03c4(n)>100\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\left| \\tau (n) \\right| > 100$$\\end{document} for all n>2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n > 2$$\\end{document}.",
"genre": "article",
"id": "sg:pub.10.1007/s00013-021-01661-6",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.8675119",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1052783",
"issn": [
"0003-889X",
"1420-8938"
],
"name": "Archiv der Mathematik",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "117"
}
],
"keywords": [
"function",
"natural variants",
"variants",
"values",
"number",
"curves",
"series",
"results",
"form",
"point",
"method",
"Lucas numbers",
"congruence",
"possible values",
"recent paper",
"Lehmer's conjecture",
"remarks",
"paper",
"small values",
"theory",
"Ramanujan",
"conjecture",
"prime factorization",
"strong form",
"integers",
"integer points",
"divisors",
"computation",
"factorization",
"primitive divisors"
],
"name": "Some remarks on small values of \u03c4(n)",
"pagination": "635-645",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1141997167"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00013-021-01661-6"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00013-021-01661-6",
"https://app.dimensions.ai/details/publication/pub.1141997167"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_875.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00013-021-01661-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01661-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01661-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01661-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01661-6'
This table displays all metadata directly associated to this object as RDF triples.
123 TRIPLES
22 PREDICATES
61 URIs
47 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00013-021-01661-6 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | N272249fb593d43828d5e91494f187937 |
4 | ″ | schema:citation | sg:pub.10.1007/978-3-540-37802-0_1 |
5 | ″ | ″ | sg:pub.10.1007/bf02684373 |
6 | ″ | ″ | sg:pub.10.1007/bf02684780 |
7 | ″ | ″ | sg:pub.10.1007/s00208-021-02241-3 |
8 | ″ | ″ | sg:pub.10.1007/s11139-012-9420-8 |
9 | ″ | ″ | sg:pub.10.1007/s40993-021-00258-w |
10 | ″ | schema:datePublished | 2021-10-19 |
11 | ″ | schema:datePublishedReg | 2021-10-19 |
12 | ″ | schema:description | A natural variant of Lehmer’s conjecture that the Ramanujan τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-function never vanishes asks whether, for any given integer α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, there exist any n∈Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \in \mathbb {Z}^+$$\end{document} such that τ(n)=α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n) = \alpha $$\end{document}. A series of recent papers excludes many integers as possible values of the τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-function using the theory of primitive divisors of Lucas numbers, computations of integer points on curves, and congruences for τ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n)$$\end{document}. We synthesize these results and methods to prove that if 0<α<100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \left| \alpha \right| < 100$$\end{document} and α∉T:={2k,-24,-48,-70,-90,92,-96}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \notin T := \{2^k, -24,-48, -70,-90, 92, -96\}$$\end{document}, then τ(n)≠α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n) \ne \alpha $$\end{document} for all n>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n > 1$$\end{document}. Moreover, if α∈T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in T$$\end{document} and τ(n)=α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n) = \alpha $$\end{document}, then n is square-free with prescribed prime factorization. Finally, we show that a strong form of the Atkin-Serre conjecture implies that τ(n)>100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| \tau (n) \right| > 100$$\end{document} for all n>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n > 2$$\end{document}. |
13 | ″ | schema:genre | article |
14 | ″ | schema:inLanguage | en |
15 | ″ | schema:isAccessibleForFree | true |
16 | ″ | schema:isPartOf | N07938eea20a247509f3d0b0acb120528 |
17 | ″ | ″ | Nab6d103fd0aa4b10a37c629146f5a710 |
18 | ″ | ″ | sg:journal.1052783 |
19 | ″ | schema:keywords | Lehmer's conjecture |
20 | ″ | ″ | Lucas numbers |
21 | ″ | ″ | Ramanujan |
22 | ″ | ″ | computation |
23 | ″ | ″ | congruence |
24 | ″ | ″ | conjecture |
25 | ″ | ″ | curves |
26 | ″ | ″ | divisors |
27 | ″ | ″ | factorization |
28 | ″ | ″ | form |
29 | ″ | ″ | function |
30 | ″ | ″ | integer points |
31 | ″ | ″ | integers |
32 | ″ | ″ | method |
33 | ″ | ″ | natural variants |
34 | ″ | ″ | number |
35 | ″ | ″ | paper |
36 | ″ | ″ | point |
37 | ″ | ″ | possible values |
38 | ″ | ″ | prime factorization |
39 | ″ | ″ | primitive divisors |
40 | ″ | ″ | recent paper |
41 | ″ | ″ | remarks |
42 | ″ | ″ | results |
43 | ″ | ″ | series |
44 | ″ | ″ | small values |
45 | ″ | ″ | strong form |
46 | ″ | ″ | theory |
47 | ″ | ″ | values |
48 | ″ | ″ | variants |
49 | ″ | schema:name | Some remarks on small values of τ(n) |
50 | ″ | schema:pagination | 635-645 |
51 | ″ | schema:productId | Nca3b5b9d194f47848dc5af707b08de87 |
52 | ″ | ″ | Nedd08f6a05f4409fbfc6dbf3b5db343a |
53 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1141997167 |
54 | ″ | ″ | https://doi.org/10.1007/s00013-021-01661-6 |
55 | ″ | schema:sdDatePublished | 2022-05-20T07:38 |
56 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
57 | ″ | schema:sdPublisher | N368c9fb76c7343659b309c5c5e5ffcf1 |
58 | ″ | schema:url | https://doi.org/10.1007/s00013-021-01661-6 |
59 | ″ | sgo:license | sg:explorer/license/ |
60 | ″ | sgo:sdDataset | articles |
61 | ″ | rdf:type | schema:ScholarlyArticle |
62 | N07938eea20a247509f3d0b0acb120528 | schema:volumeNumber | 117 |
63 | ″ | rdf:type | schema:PublicationVolume |
64 | N169f3196c24b4f29982ca0ac3c9dfdf1 | rdf:first | sg:person.014442414121.98 |
65 | ″ | rdf:rest | rdf:nil |
66 | N272249fb593d43828d5e91494f187937 | rdf:first | Nab55513dc14b4994bc6c11b8735ed58d |
67 | ″ | rdf:rest | N169f3196c24b4f29982ca0ac3c9dfdf1 |
68 | N368c9fb76c7343659b309c5c5e5ffcf1 | schema:name | Springer Nature - SN SciGraph project |
69 | ″ | rdf:type | schema:Organization |
70 | Nab55513dc14b4994bc6c11b8735ed58d | schema:affiliation | grid-institutes:grid.168010.e |
71 | ″ | schema:familyName | Lakein |
72 | ″ | schema:givenName | Kaya |
73 | ″ | rdf:type | schema:Person |
74 | Nab6d103fd0aa4b10a37c629146f5a710 | schema:issueNumber | 6 |
75 | ″ | rdf:type | schema:PublicationIssue |
76 | Nca3b5b9d194f47848dc5af707b08de87 | schema:name | dimensions_id |
77 | ″ | schema:value | pub.1141997167 |
78 | ″ | rdf:type | schema:PropertyValue |
79 | Nedd08f6a05f4409fbfc6dbf3b5db343a | schema:name | doi |
80 | ″ | schema:value | 10.1007/s00013-021-01661-6 |
81 | ″ | rdf:type | schema:PropertyValue |
82 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
83 | ″ | schema:name | Mathematical Sciences |
84 | ″ | rdf:type | schema:DefinedTerm |
85 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
86 | ″ | schema:name | Pure Mathematics |
87 | ″ | rdf:type | schema:DefinedTerm |
88 | sg:grant.8675119 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s00013-021-01661-6 |
89 | ″ | rdf:type | schema:MonetaryGrant |
90 | sg:journal.1052783 | schema:issn | 0003-889X |
91 | ″ | ″ | 1420-8938 |
92 | ″ | schema:name | Archiv der Mathematik |
93 | ″ | schema:publisher | Springer Nature |
94 | ″ | rdf:type | schema:Periodical |
95 | sg:person.014442414121.98 | schema:affiliation | grid-institutes:grid.38142.3c |
96 | ″ | schema:familyName | Larsen |
97 | ″ | schema:givenName | Anne |
98 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014442414121.98 |
99 | ″ | rdf:type | schema:Person |
100 | sg:pub.10.1007/978-3-540-37802-0_1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1047476460 |
101 | ″ | ″ | https://doi.org/10.1007/978-3-540-37802-0_1 |
102 | ″ | rdf:type | schema:CreativeWork |
103 | sg:pub.10.1007/bf02684373 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1011553118 |
104 | ″ | ″ | https://doi.org/10.1007/bf02684373 |
105 | ″ | rdf:type | schema:CreativeWork |
106 | sg:pub.10.1007/bf02684780 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1051562332 |
107 | ″ | ″ | https://doi.org/10.1007/bf02684780 |
108 | ″ | rdf:type | schema:CreativeWork |
109 | sg:pub.10.1007/s00208-021-02241-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1140292481 |
110 | ″ | ″ | https://doi.org/10.1007/s00208-021-02241-3 |
111 | ″ | rdf:type | schema:CreativeWork |
112 | sg:pub.10.1007/s11139-012-9420-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046786012 |
113 | ″ | ″ | https://doi.org/10.1007/s11139-012-9420-8 |
114 | ″ | rdf:type | schema:CreativeWork |
115 | sg:pub.10.1007/s40993-021-00258-w | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1137309525 |
116 | ″ | ″ | https://doi.org/10.1007/s40993-021-00258-w |
117 | ″ | rdf:type | schema:CreativeWork |
118 | grid-institutes:grid.168010.e | schema:alternateName | Department of Mathematics, Stanford University, 94305, Stanford, CA, USA |
119 | ″ | schema:name | Department of Mathematics, Stanford University, 94305, Stanford, CA, USA |
120 | ″ | rdf:type | schema:Organization |
121 | grid-institutes:grid.38142.3c | schema:alternateName | Department of Mathematics, Harvard University, 02138, Cambridge, MA, USA |
122 | ″ | schema:name | Department of Mathematics, Harvard University, 02138, Cambridge, MA, USA |
123 | ″ | rdf:type | schema:Organization |