Ontology type: schema:ScholarlyArticle
2021-09-23
AUTHORST. H. Freitas, V. H. Jorge Pérez
ABSTRACTFoxby (Math Scand 2:175–186, 1971–1972) showed that a Cohen-Macaulay module over a Gorenstein local ring has finite projective dimension if and only if its canonical module has finite injective dimension. In this paper, we establish the result given by Foxby in a general setting. As a byproduct, some criteria to detect the Cohen-Macaulay property of a ring are provided in terms of intrinsic properties of certain local cohomology modules. Also, as an application, we show that any Cohen-Macaulay module that has a canonical module with finite injective dimension satisfies the Auslander–Reiten conjecture. More... »
PAGES485-494
http://scigraph.springernature.com/pub.10.1007/s00013-021-01659-0
DOIhttp://dx.doi.org/10.1007/s00013-021-01659-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1141327577
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Universidade Tecnol\u00f3gica Federal do Paran\u00e1, 85053-525, Guarapuava, PR, Brazil",
"id": "http://www.grid.ac/institutes/grid.474682.b",
"name": [
"Universidade Tecnol\u00f3gica Federal do Paran\u00e1, 85053-525, Guarapuava, PR, Brazil"
],
"type": "Organization"
},
"familyName": "Freitas",
"givenName": "T. H.",
"id": "sg:person.01260766041.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260766041.51"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Universidade de S\u00e3o Paulo - ICMC, Caixa Postal 668, 13560-970, S\u00e3o Carlos, SP, Brazil",
"id": "http://www.grid.ac/institutes/grid.11899.38",
"name": [
"Universidade de S\u00e3o Paulo - ICMC, Caixa Postal 668, 13560-970, S\u00e3o Carlos, SP, Brazil"
],
"type": "Organization"
},
"familyName": "Jorge P\u00e9rez",
"givenName": "V. H.",
"id": "sg:person.015734416053.40",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015734416053.40"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01404554",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020830373",
"https://doi.org/10.1007/bf01404554"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-96517-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109707797",
"https://doi.org/10.1007/978-3-319-96517-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02685877",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002771025",
"https://doi.org/10.1007/bf02685877"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01244301",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052508933",
"https://doi.org/10.1007/bf01244301"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10468-007-9072-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001555700",
"https://doi.org/10.1007/s10468-007-9072-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00209-009-0500-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024620991",
"https://doi.org/10.1007/s00209-009-0500-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0346-0329-4_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021832884",
"https://doi.org/10.1007/978-3-0346-0329-4_4"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-09-23",
"datePublishedReg": "2021-09-23",
"description": "Foxby (Math Scand 2:175\u2013186, 1971\u20131972) showed that a Cohen-Macaulay module over a Gorenstein local ring has finite projective dimension if and only if its canonical module has finite injective dimension. In this paper, we establish the result given by Foxby in a general setting. As a byproduct, some criteria to detect the Cohen-Macaulay property of a ring are provided in terms of intrinsic properties of certain local cohomology modules. Also, as an application, we show that any Cohen-Macaulay module that has a canonical module with finite injective dimension satisfies the Auslander\u2013Reiten conjecture.",
"genre": "article",
"id": "sg:pub.10.1007/s00013-021-01659-0",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1052783",
"issn": [
"0003-889X",
"1420-8938"
],
"name": "Archiv der Mathematik",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "117"
}
],
"keywords": [
"finite injective dimension",
"Cohen\u2013Macaulay modules",
"Auslander\u2013Reiten conjecture",
"injective dimension",
"finite projective dimension",
"canonical module",
"Cohen-Macaulay property",
"general setting",
"dimension satisfies",
"module",
"projective dimension",
"properties",
"intrinsic properties",
"Foxby",
"local ring",
"certain local cohomology modules",
"dimensions",
"cohomology modules",
"applications",
"conjecture",
"Gorenstein local ring",
"byproducts",
"satisfies",
"local cohomology modules",
"results",
"terms",
"ring",
"criteria",
"setting",
"paper"
],
"name": "When does the canonical module of a module have finite injective dimension?",
"pagination": "485-494",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1141327577"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00013-021-01659-0"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00013-021-01659-0",
"https://app.dimensions.ai/details/publication/pub.1141327577"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:37",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_889.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00013-021-01659-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01659-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01659-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01659-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01659-0'
This table displays all metadata directly associated to this object as RDF triples.
126 TRIPLES
22 PREDICATES
62 URIs
47 LITERALS
6 BLANK NODES