Integral geometry of pairs of planes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-09-21

AUTHORS

Julià Cufí, Eduardo Gallego, Agustí Reventós

ABSTRACT

We deal with integrals of invariant measures of pairs of planes in the Euclidean space E3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}^{3}$$\end{document} as considered by Hug and Schneider. In this paper, we express some of these integrals in terms of functions of the visual angle of a convex set. As a consequence of our results, we evaluate the deficit in a Crofton-type inequality due to Blaschke. More... »

PAGES

579-591

References to SciGraph publications

  • 2020-04-13. Integral geometry of pairs of hyperplanes or lines in ARCHIV DER MATHEMATIK
  • 1955-12. La Geometria Integrale in MILAN JOURNAL OF MATHEMATICS
  • 2019-10-15. Integral geometry about the visual angle of a convex set in RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO SERIES 2
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00013-021-01651-8

    DOI

    http://dx.doi.org/10.1007/s00013-021-01651-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141273298


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Departament de Matem\u00e0tiques, Universitat Aut\u00f2noma de Barcelona, 08193, Bellaterra, Barcelona, Catalonia, Spain", 
              "id": "http://www.grid.ac/institutes/grid.7080.f", 
              "name": [
                "Departament de Matem\u00e0tiques, Universitat Aut\u00f2noma de Barcelona, 08193, Bellaterra, Barcelona, Catalonia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cuf\u00ed", 
            "givenName": "Juli\u00e0", 
            "id": "sg:person.013530033147.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013530033147.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departament de Matem\u00e0tiques, Universitat Aut\u00f2noma de Barcelona, 08193, Bellaterra, Barcelona, Catalonia, Spain", 
              "id": "http://www.grid.ac/institutes/grid.7080.f", 
              "name": [
                "Departament de Matem\u00e0tiques, Universitat Aut\u00f2noma de Barcelona, 08193, Bellaterra, Barcelona, Catalonia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gallego", 
            "givenName": "Eduardo", 
            "id": "sg:person.014367533445.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014367533445.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departament de Matem\u00e0tiques, Universitat Aut\u00f2noma de Barcelona, 08193, Bellaterra, Barcelona, Catalonia, Spain", 
              "id": "http://www.grid.ac/institutes/grid.7080.f", 
              "name": [
                "Departament de Matem\u00e0tiques, Universitat Aut\u00f2noma de Barcelona, 08193, Bellaterra, Barcelona, Catalonia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Revent\u00f3s", 
            "givenName": "Agust\u00ed", 
            "id": "sg:person.012110152715.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012110152715.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02923817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010479445", 
              "https://doi.org/10.1007/bf02923817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12215-019-00461-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121832381", 
              "https://doi.org/10.1007/s12215-019-00461-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00013-020-01465-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126646967", 
              "https://doi.org/10.1007/s00013-020-01465-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-09-21", 
        "datePublishedReg": "2021-09-21", 
        "description": "We deal with integrals of invariant measures of pairs of planes in the Euclidean space E3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathbb {E}}^{3}$$\\end{document} as considered by Hug and Schneider. In this paper, we express some of these integrals in terms of functions of the visual angle of a convex set. As a consequence of our results, we evaluate the deficit in a Crofton-type inequality due to Blaschke.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00013-021-01651-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052783", 
            "issn": [
              "0003-889X", 
              "1420-8938"
            ], 
            "name": "Archiv der Mathematik", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "117"
          }
        ], 
        "keywords": [
          "invariant measure", 
          "integral geometry", 
          "Euclidean space", 
          "convex sets", 
          "pair of planes", 
          "integrals", 
          "terms of function", 
          "plane", 
          "Blaschke", 
          "geometry", 
          "space", 
          "inequality", 
          "pairs", 
          "terms", 
          "set", 
          "Schneider", 
          "function", 
          "angle", 
          "results", 
          "measures", 
          "consequences", 
          "hug", 
          "visual angle", 
          "deficits", 
          "paper"
        ], 
        "name": "Integral geometry of pairs of planes", 
        "pagination": "579-591", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141273298"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00013-021-01651-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00013-021-01651-8", 
          "https://app.dimensions.ai/details/publication/pub.1141273298"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_875.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00013-021-01651-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01651-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01651-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01651-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-021-01651-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    109 TRIPLES      22 PREDICATES      53 URIs      42 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00013-021-01651-8 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nc84f4c40133f4994ac7a11599657ad0d
    4 schema:citation sg:pub.10.1007/bf02923817
    5 sg:pub.10.1007/s00013-020-01465-0
    6 sg:pub.10.1007/s12215-019-00461-w
    7 schema:datePublished 2021-09-21
    8 schema:datePublishedReg 2021-09-21
    9 schema:description We deal with integrals of invariant measures of pairs of planes in the Euclidean space E3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}^{3}$$\end{document} as considered by Hug and Schneider. In this paper, we express some of these integrals in terms of functions of the visual angle of a convex set. As a consequence of our results, we evaluate the deficit in a Crofton-type inequality due to Blaschke.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N0377a3d3b9e242ea9ea4024f17c0890e
    14 N4f327d0c889a43d0a4907428c6c7ac17
    15 sg:journal.1052783
    16 schema:keywords Blaschke
    17 Euclidean space
    18 Schneider
    19 angle
    20 consequences
    21 convex sets
    22 deficits
    23 function
    24 geometry
    25 hug
    26 inequality
    27 integral geometry
    28 integrals
    29 invariant measure
    30 measures
    31 pair of planes
    32 pairs
    33 paper
    34 plane
    35 results
    36 set
    37 space
    38 terms
    39 terms of function
    40 visual angle
    41 schema:name Integral geometry of pairs of planes
    42 schema:pagination 579-591
    43 schema:productId N3a642f8bd76248ce815c9aeba41bf3f9
    44 Ncd97c182b039439697a7c5a7217c0ccc
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141273298
    46 https://doi.org/10.1007/s00013-021-01651-8
    47 schema:sdDatePublished 2022-05-20T07:38
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher N7462e52bd8354c548385664e500474a2
    50 schema:url https://doi.org/10.1007/s00013-021-01651-8
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N0377a3d3b9e242ea9ea4024f17c0890e schema:volumeNumber 117
    55 rdf:type schema:PublicationVolume
    56 N3a642f8bd76248ce815c9aeba41bf3f9 schema:name dimensions_id
    57 schema:value pub.1141273298
    58 rdf:type schema:PropertyValue
    59 N4f327d0c889a43d0a4907428c6c7ac17 schema:issueNumber 5
    60 rdf:type schema:PublicationIssue
    61 N6c19e4045a314c00a6f1da2394c8d6c6 rdf:first sg:person.014367533445.50
    62 rdf:rest N7190d39655bd440880f722f7a5b38b6b
    63 N7190d39655bd440880f722f7a5b38b6b rdf:first sg:person.012110152715.79
    64 rdf:rest rdf:nil
    65 N7462e52bd8354c548385664e500474a2 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 Nc84f4c40133f4994ac7a11599657ad0d rdf:first sg:person.013530033147.49
    68 rdf:rest N6c19e4045a314c00a6f1da2394c8d6c6
    69 Ncd97c182b039439697a7c5a7217c0ccc schema:name doi
    70 schema:value 10.1007/s00013-021-01651-8
    71 rdf:type schema:PropertyValue
    72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Mathematical Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Pure Mathematics
    77 rdf:type schema:DefinedTerm
    78 sg:journal.1052783 schema:issn 0003-889X
    79 1420-8938
    80 schema:name Archiv der Mathematik
    81 schema:publisher Springer Nature
    82 rdf:type schema:Periodical
    83 sg:person.012110152715.79 schema:affiliation grid-institutes:grid.7080.f
    84 schema:familyName Reventós
    85 schema:givenName Agustí
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012110152715.79
    87 rdf:type schema:Person
    88 sg:person.013530033147.49 schema:affiliation grid-institutes:grid.7080.f
    89 schema:familyName Cufí
    90 schema:givenName Julià
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013530033147.49
    92 rdf:type schema:Person
    93 sg:person.014367533445.50 schema:affiliation grid-institutes:grid.7080.f
    94 schema:familyName Gallego
    95 schema:givenName Eduardo
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014367533445.50
    97 rdf:type schema:Person
    98 sg:pub.10.1007/bf02923817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010479445
    99 https://doi.org/10.1007/bf02923817
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/s00013-020-01465-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126646967
    102 https://doi.org/10.1007/s00013-020-01465-0
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/s12215-019-00461-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1121832381
    105 https://doi.org/10.1007/s12215-019-00461-w
    106 rdf:type schema:CreativeWork
    107 grid-institutes:grid.7080.f schema:alternateName Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Catalonia, Spain
    108 schema:name Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Catalonia, Spain
    109 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...