The polynomial Daugavetian index of a complex Banach space View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Elisa R. Santos

ABSTRACT

We introduce the polynomial Daugavetian index of an infinite-dimensional complex Banach space. This index generalizes to polynomials the Daugavetian index defined for operators by M. Martín in 2003. We also present some results about the introduced index.

PAGES

407-416

References to SciGraph publications

Journal

TITLE

Archiv der Mathematik

ISSUE

4

VOLUME

112

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00013-018-1268-8

DOI

http://dx.doi.org/10.1007/s00013-018-1268-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110555690


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Federal University of Uberl\u00e2ndia", 
          "id": "https://www.grid.ac/institutes/grid.411284.a", 
          "name": [
            "Faculdade de Matem\u00e1tica, Universidade Federal de Uberl\u00e2ndia, 38.400-902, Uberl\u00e2ndia, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Santos", 
        "givenName": "Elisa R.", 
        "id": "sg:person.014164177475.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014164177475.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9947-99-02377-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010859807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00013-016-0914-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016151600", 
          "https://doi.org/10.1007/s00013-016-0914-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(76)90026-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043075580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00013-010-0105-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043998584", 
          "https://doi.org/10.1007/s00013-010-0105-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00013-010-0105-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043998584", 
          "https://doi.org/10.1007/s00013-010-0105-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2013.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052400999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0013091502000810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053936330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0013091502000810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053936330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/qmath/ham054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059989107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2373743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069900264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/sm178-1-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072184732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/sm224-3-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072185496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.11650/twjm/1500407582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090785637"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "We introduce the polynomial Daugavetian index of an infinite-dimensional complex Banach space. This index generalizes to polynomials the Daugavetian index defined for operators by M. Mart\u00edn in 2003. We also present some results about the introduced index.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00013-018-1268-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052783", 
        "issn": [
          "0003-889X", 
          "1420-8938"
        ], 
        "name": "Archiv der Mathematik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "112"
      }
    ], 
    "name": "The polynomial Daugavetian index of a complex Banach space", 
    "pagination": "407-416", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "925a50ae4cfba3cac451adfd775a08e0e223515cc84d05309b2529fedb307c3a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00013-018-1268-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110555690"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00013-018-1268-8", 
      "https://app.dimensions.ai/details/publication/pub.1110555690"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112036_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00013-018-1268-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-018-1268-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-018-1268-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-018-1268-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-018-1268-8'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      20 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00013-018-1268-8 schema:author Na2491f06b6d540bf899899097d0f3fbb
2 schema:citation sg:pub.10.1007/s00013-010-0105-5
3 sg:pub.10.1007/s00013-016-0914-2
4 https://doi.org/10.1016/0022-1236(76)90026-4
5 https://doi.org/10.1016/j.jmaa.2013.07.002
6 https://doi.org/10.1017/s0013091502000810
7 https://doi.org/10.1090/s0002-9947-99-02377-6
8 https://doi.org/10.1093/qmath/ham054
9 https://doi.org/10.11650/twjm/1500407582
10 https://doi.org/10.2307/2373743
11 https://doi.org/10.4064/sm178-1-4
12 https://doi.org/10.4064/sm224-3-4
13 schema:datePublished 2019-04
14 schema:datePublishedReg 2019-04-01
15 schema:description We introduce the polynomial Daugavetian index of an infinite-dimensional complex Banach space. This index generalizes to polynomials the Daugavetian index defined for operators by M. Martín in 2003. We also present some results about the introduced index.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Ne84c6bfcab5041b5abaa8279f996f3fa
20 Nf685fcf841874ed0a69b140469bc46fa
21 sg:journal.1052783
22 schema:name The polynomial Daugavetian index of a complex Banach space
23 schema:pagination 407-416
24 schema:productId N5e101a1857394b6789f7519f8ddca05e
25 N864b3b90e9d04112b45872868d385da1
26 Nbd2e6835927345df9205bbe0139523da
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110555690
28 https://doi.org/10.1007/s00013-018-1268-8
29 schema:sdDatePublished 2019-04-11T13:04
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Nbc419f2870d541108358db2e8c6a1d16
32 schema:url https://link.springer.com/10.1007%2Fs00013-018-1268-8
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N5e101a1857394b6789f7519f8ddca05e schema:name doi
37 schema:value 10.1007/s00013-018-1268-8
38 rdf:type schema:PropertyValue
39 N864b3b90e9d04112b45872868d385da1 schema:name dimensions_id
40 schema:value pub.1110555690
41 rdf:type schema:PropertyValue
42 Na2491f06b6d540bf899899097d0f3fbb rdf:first sg:person.014164177475.70
43 rdf:rest rdf:nil
44 Nbc419f2870d541108358db2e8c6a1d16 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 Nbd2e6835927345df9205bbe0139523da schema:name readcube_id
47 schema:value 925a50ae4cfba3cac451adfd775a08e0e223515cc84d05309b2529fedb307c3a
48 rdf:type schema:PropertyValue
49 Ne84c6bfcab5041b5abaa8279f996f3fa schema:issueNumber 4
50 rdf:type schema:PublicationIssue
51 Nf685fcf841874ed0a69b140469bc46fa schema:volumeNumber 112
52 rdf:type schema:PublicationVolume
53 sg:journal.1052783 schema:issn 0003-889X
54 1420-8938
55 schema:name Archiv der Mathematik
56 rdf:type schema:Periodical
57 sg:person.014164177475.70 schema:affiliation https://www.grid.ac/institutes/grid.411284.a
58 schema:familyName Santos
59 schema:givenName Elisa R.
60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014164177475.70
61 rdf:type schema:Person
62 sg:pub.10.1007/s00013-010-0105-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043998584
63 https://doi.org/10.1007/s00013-010-0105-5
64 rdf:type schema:CreativeWork
65 sg:pub.10.1007/s00013-016-0914-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016151600
66 https://doi.org/10.1007/s00013-016-0914-2
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1016/0022-1236(76)90026-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043075580
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1016/j.jmaa.2013.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052400999
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1017/s0013091502000810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053936330
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1090/s0002-9947-99-02377-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010859807
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1093/qmath/ham054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059989107
77 rdf:type schema:CreativeWork
78 https://doi.org/10.11650/twjm/1500407582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090785637
79 rdf:type schema:CreativeWork
80 https://doi.org/10.2307/2373743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069900264
81 rdf:type schema:CreativeWork
82 https://doi.org/10.4064/sm178-1-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072184732
83 rdf:type schema:CreativeWork
84 https://doi.org/10.4064/sm224-3-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072185496
85 rdf:type schema:CreativeWork
86 https://www.grid.ac/institutes/grid.411284.a schema:alternateName Federal University of Uberlândia
87 schema:name Faculdade de Matemática, Universidade Federal de Uberlândia, 38.400-902, Uberlândia, Brazil
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...