Uniform equicontinuity, multiplier topology and continuity of convolution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-04

AUTHORS

Matthias Neufang, Jan Pachl, Pekka Salmi

ABSTRACT

We characterise bounded uniformly equicontinuous sets of functions on locally compact groups in terms of uniform factorisation. We apply this result to study the continuity of the convolution product on the dual LUC(G)* of the space of bounded left uniformly continuous functions with the topology of uniform convergence on bounded uniformly equicontinuous sets. When restricted to the space of finite Radon measures on a locally compact group, this is the right multiplier topology. For any topological group, the convolution is jointly continuous on bounded sets in the measure algebra. It is jointly continuous on all of LUC(G)* when G is a locally compact SIN group. More... »

PAGES

367-376

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00013-015-0726-9

DOI

http://dx.doi.org/10.1007/s00013-015-0726-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036974346


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lille 1 University", 
          "id": "https://www.grid.ac/institutes/grid.4461.7", 
          "name": [
            "School of Mathematics and Statistics, Carleton University, K1S 5B6, Ottawa, ON, Canada", 
            "Laboratoire de Math\u00e9matiques Paul Painlev\u00e9 (UMR CNRS 8524), Universit\u00e9 Lille 1-Sciences et Technologies, UFR de Math\u00e9matiques, 59655, Villeneuve d\u2019Ascq Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neufang", 
        "givenName": "Matthias", 
        "id": "sg:person.015323257503.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015323257503.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fields Institute for Research in Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.249304.8", 
          "name": [
            "Fields Institute, 222 College Street, M5T 3J1, Toronto, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pachl", 
        "givenName": "Jan", 
        "id": "sg:person.07415566703.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07415566703.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oulu", 
          "id": "https://www.grid.ac/institutes/grid.10858.34", 
          "name": [
            "Department of Mathematical Sciences, University of Oulu, PL 3000, 90014, Oulu, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salmi", 
        "givenName": "Pekka", 
        "id": "sg:person.014450424357.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014450424357.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9939-1987-0875395-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005389033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00233-009-9189-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008976563", 
          "https://doi.org/10.1007/s00233-009-9189-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00233-009-9189-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008976563", 
          "https://doi.org/10.1007/s00233-009-9189-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00233-009-9189-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008976563", 
          "https://doi.org/10.1007/s00233-009-9189-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s3-15.1.84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023270485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00013-003-0516-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027854071", 
          "https://doi.org/10.1007/s00013-003-0516-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s3-14.3.431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033792650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1969-0247437-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041320383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-5058-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041382726", 
          "https://doi.org/10.1007/978-1-4614-5058-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-5058-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041382726", 
          "https://doi.org/10.1007/978-1-4614-5058-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100064197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053915262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1952.2.251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069062217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2374298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069900724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/ulect/040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098698170"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-04", 
    "datePublishedReg": "2015-04-01", 
    "description": "We characterise bounded uniformly equicontinuous sets of functions on locally compact groups in terms of uniform factorisation. We apply this result to study the continuity of the convolution product on the dual LUC(G)* of the space of bounded left uniformly continuous functions with the topology of uniform convergence on bounded uniformly equicontinuous sets. When restricted to the space of finite Radon measures on a locally compact group, this is the right multiplier topology. For any topological group, the convolution is jointly continuous on bounded sets in the measure algebra. It is jointly continuous on all of LUC(G)* when G is a locally compact SIN group.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00013-015-0726-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052783", 
        "issn": [
          "0003-889X", 
          "1420-8938"
        ], 
        "name": "Archiv der Mathematik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "104"
      }
    ], 
    "name": "Uniform equicontinuity, multiplier topology and continuity of convolution", 
    "pagination": "367-376", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b021e13492e3f65f00b8a52d666b0de8fea57611f6cbdcbdc8162baa3815b2b4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00013-015-0726-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036974346"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00013-015-0726-9", 
      "https://app.dimensions.ai/details/publication/pub.1036974346"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000490.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00013-015-0726-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-015-0726-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-015-0726-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-015-0726-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-015-0726-9'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00013-015-0726-9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N1f4f0f3222f34649af41249bd904b04f
4 schema:citation sg:pub.10.1007/978-1-4614-5058-0
5 sg:pub.10.1007/s00013-003-0516-7
6 sg:pub.10.1007/s00233-009-9189-2
7 https://doi.org/10.1017/s0305004100064197
8 https://doi.org/10.1090/s0002-9939-1987-0875395-9
9 https://doi.org/10.1090/s0002-9947-1969-0247437-9
10 https://doi.org/10.1090/ulect/040
11 https://doi.org/10.1112/plms/s3-14.3.431
12 https://doi.org/10.1112/plms/s3-15.1.84
13 https://doi.org/10.2140/pjm.1952.2.251
14 https://doi.org/10.2307/2374298
15 schema:datePublished 2015-04
16 schema:datePublishedReg 2015-04-01
17 schema:description We characterise bounded uniformly equicontinuous sets of functions on locally compact groups in terms of uniform factorisation. We apply this result to study the continuity of the convolution product on the dual LUC(G)* of the space of bounded left uniformly continuous functions with the topology of uniform convergence on bounded uniformly equicontinuous sets. When restricted to the space of finite Radon measures on a locally compact group, this is the right multiplier topology. For any topological group, the convolution is jointly continuous on bounded sets in the measure algebra. It is jointly continuous on all of LUC(G)* when G is a locally compact SIN group.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N71a04e8ffbcd4c348dd802979b4dc601
22 N7cea993bd7f2445a99a9793256e72e56
23 sg:journal.1052783
24 schema:name Uniform equicontinuity, multiplier topology and continuity of convolution
25 schema:pagination 367-376
26 schema:productId N1bf6d89f9be04eafb438d4e0de0c1269
27 N9c766f4cab274456a5fb6922fbc10a26
28 Nbb7b5ef652124d41a4cc1a694b73098b
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036974346
30 https://doi.org/10.1007/s00013-015-0726-9
31 schema:sdDatePublished 2019-04-10T13:09
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N7becccee9f2e4a2a9b440cfc633a59dc
34 schema:url http://link.springer.com/10.1007/s00013-015-0726-9
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N1bf6d89f9be04eafb438d4e0de0c1269 schema:name doi
39 schema:value 10.1007/s00013-015-0726-9
40 rdf:type schema:PropertyValue
41 N1f4f0f3222f34649af41249bd904b04f rdf:first sg:person.015323257503.92
42 rdf:rest N56c017ed3f704f209f3fe08de4c16be7
43 N282d6955157f4dc199f5ceb8167ff8c2 rdf:first sg:person.014450424357.88
44 rdf:rest rdf:nil
45 N56c017ed3f704f209f3fe08de4c16be7 rdf:first sg:person.07415566703.41
46 rdf:rest N282d6955157f4dc199f5ceb8167ff8c2
47 N71a04e8ffbcd4c348dd802979b4dc601 schema:issueNumber 4
48 rdf:type schema:PublicationIssue
49 N7becccee9f2e4a2a9b440cfc633a59dc schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N7cea993bd7f2445a99a9793256e72e56 schema:volumeNumber 104
52 rdf:type schema:PublicationVolume
53 N9c766f4cab274456a5fb6922fbc10a26 schema:name readcube_id
54 schema:value b021e13492e3f65f00b8a52d666b0de8fea57611f6cbdcbdc8162baa3815b2b4
55 rdf:type schema:PropertyValue
56 Nbb7b5ef652124d41a4cc1a694b73098b schema:name dimensions_id
57 schema:value pub.1036974346
58 rdf:type schema:PropertyValue
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
63 schema:name Pure Mathematics
64 rdf:type schema:DefinedTerm
65 sg:journal.1052783 schema:issn 0003-889X
66 1420-8938
67 schema:name Archiv der Mathematik
68 rdf:type schema:Periodical
69 sg:person.014450424357.88 schema:affiliation https://www.grid.ac/institutes/grid.10858.34
70 schema:familyName Salmi
71 schema:givenName Pekka
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014450424357.88
73 rdf:type schema:Person
74 sg:person.015323257503.92 schema:affiliation https://www.grid.ac/institutes/grid.4461.7
75 schema:familyName Neufang
76 schema:givenName Matthias
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015323257503.92
78 rdf:type schema:Person
79 sg:person.07415566703.41 schema:affiliation https://www.grid.ac/institutes/grid.249304.8
80 schema:familyName Pachl
81 schema:givenName Jan
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07415566703.41
83 rdf:type schema:Person
84 sg:pub.10.1007/978-1-4614-5058-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041382726
85 https://doi.org/10.1007/978-1-4614-5058-0
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s00013-003-0516-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027854071
88 https://doi.org/10.1007/s00013-003-0516-7
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s00233-009-9189-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008976563
91 https://doi.org/10.1007/s00233-009-9189-2
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1017/s0305004100064197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053915262
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1090/s0002-9939-1987-0875395-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005389033
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1090/s0002-9947-1969-0247437-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041320383
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1090/ulect/040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098698170
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1112/plms/s3-14.3.431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033792650
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1112/plms/s3-15.1.84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023270485
104 rdf:type schema:CreativeWork
105 https://doi.org/10.2140/pjm.1952.2.251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069062217
106 rdf:type schema:CreativeWork
107 https://doi.org/10.2307/2374298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069900724
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.10858.34 schema:alternateName University of Oulu
110 schema:name Department of Mathematical Sciences, University of Oulu, PL 3000, 90014, Oulu, Finland
111 rdf:type schema:Organization
112 https://www.grid.ac/institutes/grid.249304.8 schema:alternateName Fields Institute for Research in Mathematical Sciences
113 schema:name Fields Institute, 222 College Street, M5T 3J1, Toronto, ON, Canada
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.4461.7 schema:alternateName Lille 1 University
116 schema:name Laboratoire de Mathématiques Paul Painlevé (UMR CNRS 8524), Université Lille 1-Sciences et Technologies, UFR de Mathématiques, 59655, Villeneuve d’Ascq Cedex, France
117 School of Mathematics and Statistics, Carleton University, K1S 5B6, Ottawa, ON, Canada
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...