On quantitative aspects of the unit sum number problem View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-09-02

AUTHORS

Clemens Fuchs, Robert Tichy, Volker Ziegler

ABSTRACT

We investigate the function uK,S(n; q) which counts the number of representations of algebraic integers α with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|N_{K/{\mathbb Q}}(\alpha)| \leq q}$$\end{document} for some real positive q that can be written as sums of exactly n S-units of the number field K.

PAGES

259-268

References to SciGraph publications

  • 2007-01-31. On Sums of Units in MONATSHEFTE FÜR MATHEMATIK
  • 1977-12. The2-adic Thue-Siegel-Roth-Schmidt theorem in ARCHIV DER MATHEMATIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00013-009-0037-0

    DOI

    http://dx.doi.org/10.1007/s00013-009-0037-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016513051


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, ETH Zurich, Raemistrasse 101, 8092, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Department of Mathematics, ETH Zurich, Raemistrasse 101, 8092, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fuchs", 
            "givenName": "Clemens", 
            "id": "sg:person.011534256073.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Analysis and Computational Number Theory, Graz University of Technology, Steyrergasse 30, 8010, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.410413.3", 
              "name": [
                "Institute for Analysis and Computational Number Theory, Graz University of Technology, Steyrergasse 30, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tichy", 
            "givenName": "Robert", 
            "id": "sg:person.015312676677.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Analysis and Computational Number Theory, Graz University of Technology, Steyrergasse 30, 8010, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.410413.3", 
              "name": [
                "Institute for Analysis and Computational Number Theory, Graz University of Technology, Steyrergasse 30, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ziegler", 
            "givenName": "Volker", 
            "id": "sg:person.010167602321.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010167602321.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00605-006-0402-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015657696", 
              "https://doi.org/10.1007/s00605-006-0402-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01220404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045939467", 
              "https://doi.org/10.1007/bf01220404"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-09-02", 
        "datePublishedReg": "2009-09-02", 
        "description": "We investigate the function uK,S(n; q) which counts the number of representations of algebraic integers \u03b1 with \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${|N_{K/{\\mathbb Q}}(\\alpha)| \\leq q}$$\\end{document} for some real positive q that can be written as sums of exactly n S-units of the number field K.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00013-009-0037-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5223841", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052783", 
            "issn": [
              "0003-889X", 
              "1420-8938"
            ], 
            "name": "Archiv der Mathematik", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "93"
          }
        ], 
        "keywords": [
          "number of representations", 
          "representation", 
          "quantitative aspects", 
          "aspects", 
          "problem", 
          "UK", 
          "sum", 
          "number", 
          "units", 
          "number problem", 
          "algebraic integer \u03b1", 
          "number field K.", 
          "field K.", 
          "integer \u03b1", 
          "function uK", 
          "K.", 
          "unit sum number problem", 
          "sum number problem"
        ], 
        "name": "On quantitative aspects of the unit sum number problem", 
        "pagination": "259-268", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016513051"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00013-009-0037-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00013-009-0037-0", 
          "https://app.dimensions.ai/details/publication/pub.1016513051"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_481.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00013-009-0037-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-009-0037-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-009-0037-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-009-0037-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-009-0037-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    103 TRIPLES      22 PREDICATES      45 URIs      35 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00013-009-0037-0 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N43f4bedcdc534ba382fb9a2bfe097894
    4 schema:citation sg:pub.10.1007/bf01220404
    5 sg:pub.10.1007/s00605-006-0402-z
    6 schema:datePublished 2009-09-02
    7 schema:datePublishedReg 2009-09-02
    8 schema:description We investigate the function uK,S(n; q) which counts the number of representations of algebraic integers α with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|N_{K/{\mathbb Q}}(\alpha)| \leq q}$$\end{document} for some real positive q that can be written as sums of exactly n S-units of the number field K.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree true
    12 schema:isPartOf N753439fda322423696e4cc9441848197
    13 N9b1bbdc186694e5a96e847b17158dbde
    14 sg:journal.1052783
    15 schema:keywords K.
    16 UK
    17 algebraic integer α
    18 aspects
    19 field K.
    20 function uK
    21 integer α
    22 number
    23 number field K.
    24 number of representations
    25 number problem
    26 problem
    27 quantitative aspects
    28 representation
    29 sum
    30 sum number problem
    31 unit sum number problem
    32 units
    33 schema:name On quantitative aspects of the unit sum number problem
    34 schema:pagination 259-268
    35 schema:productId N0ab3a6f291d546f29c8d137cec3fbbb7
    36 N76bed2369c6a4ba6bd2cad4b4062e409
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016513051
    38 https://doi.org/10.1007/s00013-009-0037-0
    39 schema:sdDatePublished 2021-12-01T19:21
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher Ncf00187941f846b88e6395179758a1a3
    42 schema:url https://doi.org/10.1007/s00013-009-0037-0
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N0ab3a6f291d546f29c8d137cec3fbbb7 schema:name dimensions_id
    47 schema:value pub.1016513051
    48 rdf:type schema:PropertyValue
    49 N17a79f67e5394c94b4ad1263bc1bd8f6 rdf:first sg:person.010167602321.26
    50 rdf:rest rdf:nil
    51 N35defa5301824ded9ff58f2822d9832b rdf:first sg:person.015312676677.43
    52 rdf:rest N17a79f67e5394c94b4ad1263bc1bd8f6
    53 N43f4bedcdc534ba382fb9a2bfe097894 rdf:first sg:person.011534256073.49
    54 rdf:rest N35defa5301824ded9ff58f2822d9832b
    55 N753439fda322423696e4cc9441848197 schema:issueNumber 3
    56 rdf:type schema:PublicationIssue
    57 N76bed2369c6a4ba6bd2cad4b4062e409 schema:name doi
    58 schema:value 10.1007/s00013-009-0037-0
    59 rdf:type schema:PropertyValue
    60 N9b1bbdc186694e5a96e847b17158dbde schema:volumeNumber 93
    61 rdf:type schema:PublicationVolume
    62 Ncf00187941f846b88e6395179758a1a3 schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Mathematical Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Pure Mathematics
    69 rdf:type schema:DefinedTerm
    70 sg:grant.5223841 http://pending.schema.org/fundedItem sg:pub.10.1007/s00013-009-0037-0
    71 rdf:type schema:MonetaryGrant
    72 sg:journal.1052783 schema:issn 0003-889X
    73 1420-8938
    74 schema:name Archiv der Mathematik
    75 schema:publisher Springer Nature
    76 rdf:type schema:Periodical
    77 sg:person.010167602321.26 schema:affiliation grid-institutes:grid.410413.3
    78 schema:familyName Ziegler
    79 schema:givenName Volker
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010167602321.26
    81 rdf:type schema:Person
    82 sg:person.011534256073.49 schema:affiliation grid-institutes:grid.5801.c
    83 schema:familyName Fuchs
    84 schema:givenName Clemens
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49
    86 rdf:type schema:Person
    87 sg:person.015312676677.43 schema:affiliation grid-institutes:grid.410413.3
    88 schema:familyName Tichy
    89 schema:givenName Robert
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43
    91 rdf:type schema:Person
    92 sg:pub.10.1007/bf01220404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045939467
    93 https://doi.org/10.1007/bf01220404
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/s00605-006-0402-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1015657696
    96 https://doi.org/10.1007/s00605-006-0402-z
    97 rdf:type schema:CreativeWork
    98 grid-institutes:grid.410413.3 schema:alternateName Institute for Analysis and Computational Number Theory, Graz University of Technology, Steyrergasse 30, 8010, Graz, Austria
    99 schema:name Institute for Analysis and Computational Number Theory, Graz University of Technology, Steyrergasse 30, 8010, Graz, Austria
    100 rdf:type schema:Organization
    101 grid-institutes:grid.5801.c schema:alternateName Department of Mathematics, ETH Zurich, Raemistrasse 101, 8092, Zurich, Switzerland
    102 schema:name Department of Mathematics, ETH Zurich, Raemistrasse 101, 8092, Zurich, Switzerland
    103 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...