On quantitative aspects of the unit sum number problem View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-09

AUTHORS

Clemens Fuchs, Robert Tichy, Volker Ziegler

ABSTRACT

We investigate the function uK,S(n; q) which counts the number of representations of algebraic integers α with for some real positive q that can be written as sums of exactly n S-units of the number field K.

PAGES

259-268

References to SciGraph publications

  • 2007-04. On Sums of Units in MONATSHEFTE FÜR MATHEMATIK
  • 1977-12. The2-adic Thue-Siegel-Roth-Schmidt theorem in ARCHIV DER MATHEMATIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00013-009-0037-0

    DOI

    http://dx.doi.org/10.1007/s00013-009-0037-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016513051


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Swiss Federal Institute of Technology in Zurich", 
              "id": "https://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Department of Mathematics, ETH Zurich, Raemistrasse 101, 8092, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fuchs", 
            "givenName": "Clemens", 
            "id": "sg:person.011534256073.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Graz University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.410413.3", 
              "name": [
                "Institute for Analysis and Computational Number Theory, Graz University of Technology, Steyrergasse 30, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tichy", 
            "givenName": "Robert", 
            "id": "sg:person.015312676677.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Graz University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.410413.3", 
              "name": [
                "Institute for Analysis and Computational Number Theory, Graz University of Technology, Steyrergasse 30, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ziegler", 
            "givenName": "Volker", 
            "id": "sg:person.010167602321.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010167602321.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00605-006-0402-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015657696", 
              "https://doi.org/10.1007/s00605-006-0402-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00605-006-0402-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015657696", 
              "https://doi.org/10.1007/s00605-006-0402-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/jlms/s2-12.2.141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018304692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9939-1964-0160746-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032035741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-314x(71)90001-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032649788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/blms/6.1.66", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034511444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9939-1954-0062728-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044734497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01220404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045939467", 
              "https://doi.org/10.1007/bf01220404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01220404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045939467", 
              "https://doi.org/10.1007/bf01220404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-314x(90)90118-b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051167769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/qmath/hah023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059988972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/qmath/hah046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059988995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3336/gm.43.2.05", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071148087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/aa133-4-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072178418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/cm109-1-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072181867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7169/facm/1229696558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073637822"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-09", 
        "datePublishedReg": "2009-09-01", 
        "description": "We investigate the function uK,S(n; q) which counts the number of representations of algebraic integers \u03b1 with for some real positive q that can be written as sums of exactly n S-units of the number field K.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00013-009-0037-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052783", 
            "issn": [
              "0003-889X", 
              "1420-8938"
            ], 
            "name": "Archiv der Mathematik", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "93"
          }
        ], 
        "name": "On quantitative aspects of the unit sum number problem", 
        "pagination": "259-268", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4eae04f98c494b7cfe35def90b1a416e2d938b1925a99a204608b5e39b24f93f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00013-009-0037-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016513051"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00013-009-0037-0", 
          "https://app.dimensions.ai/details/publication/pub.1016513051"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13071_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00013-009-0037-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-009-0037-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-009-0037-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-009-0037-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-009-0037-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    114 TRIPLES      20 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00013-009-0037-0 schema:author Nb2e5632c7b52488690ef2ee619d3e6c9
    2 schema:citation sg:pub.10.1007/bf01220404
    3 sg:pub.10.1007/s00605-006-0402-z
    4 https://doi.org/10.1016/0022-314x(71)90001-1
    5 https://doi.org/10.1016/0022-314x(90)90118-b
    6 https://doi.org/10.1090/s0002-9939-1954-0062728-7
    7 https://doi.org/10.1090/s0002-9939-1964-0160746-8
    8 https://doi.org/10.1093/qmath/hah023
    9 https://doi.org/10.1093/qmath/hah046
    10 https://doi.org/10.1112/blms/6.1.66
    11 https://doi.org/10.1112/jlms/s2-12.2.141
    12 https://doi.org/10.3336/gm.43.2.05
    13 https://doi.org/10.4064/aa133-4-1
    14 https://doi.org/10.4064/cm109-1-6
    15 https://doi.org/10.7169/facm/1229696558
    16 schema:datePublished 2009-09
    17 schema:datePublishedReg 2009-09-01
    18 schema:description We investigate the function uK,S(n; q) which counts the number of representations of algebraic integers α with for some real positive q that can be written as sums of exactly n S-units of the number field K.
    19 schema:genre research_article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree true
    22 schema:isPartOf N5ff229099f124d9da2af31261470a1dd
    23 N97e8bad245ec48aba110b2909c24b0b4
    24 sg:journal.1052783
    25 schema:name On quantitative aspects of the unit sum number problem
    26 schema:pagination 259-268
    27 schema:productId N188a29b8b1f24a47b4f7374216a3d247
    28 N66f765d8ed17418b852e6840ee98000c
    29 Ne0f681bf8a0945288353494c16f6a6d3
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016513051
    31 https://doi.org/10.1007/s00013-009-0037-0
    32 schema:sdDatePublished 2019-04-11T14:26
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher N7fe174d3ff42484cafa545c758475ea7
    35 schema:url http://link.springer.com/10.1007/s00013-009-0037-0
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N188a29b8b1f24a47b4f7374216a3d247 schema:name doi
    40 schema:value 10.1007/s00013-009-0037-0
    41 rdf:type schema:PropertyValue
    42 N2fb94956dd174c21890140613f74b17a rdf:first sg:person.010167602321.26
    43 rdf:rest rdf:nil
    44 N5ff229099f124d9da2af31261470a1dd schema:volumeNumber 93
    45 rdf:type schema:PublicationVolume
    46 N66f765d8ed17418b852e6840ee98000c schema:name readcube_id
    47 schema:value 4eae04f98c494b7cfe35def90b1a416e2d938b1925a99a204608b5e39b24f93f
    48 rdf:type schema:PropertyValue
    49 N7fe174d3ff42484cafa545c758475ea7 schema:name Springer Nature - SN SciGraph project
    50 rdf:type schema:Organization
    51 N97e8bad245ec48aba110b2909c24b0b4 schema:issueNumber 3
    52 rdf:type schema:PublicationIssue
    53 Nb2e5632c7b52488690ef2ee619d3e6c9 rdf:first sg:person.011534256073.49
    54 rdf:rest Ncdee1da0f8ce4d1fa6c837fb1f7e96a9
    55 Ncdee1da0f8ce4d1fa6c837fb1f7e96a9 rdf:first sg:person.015312676677.43
    56 rdf:rest N2fb94956dd174c21890140613f74b17a
    57 Ne0f681bf8a0945288353494c16f6a6d3 schema:name dimensions_id
    58 schema:value pub.1016513051
    59 rdf:type schema:PropertyValue
    60 sg:journal.1052783 schema:issn 0003-889X
    61 1420-8938
    62 schema:name Archiv der Mathematik
    63 rdf:type schema:Periodical
    64 sg:person.010167602321.26 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
    65 schema:familyName Ziegler
    66 schema:givenName Volker
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010167602321.26
    68 rdf:type schema:Person
    69 sg:person.011534256073.49 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
    70 schema:familyName Fuchs
    71 schema:givenName Clemens
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49
    73 rdf:type schema:Person
    74 sg:person.015312676677.43 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
    75 schema:familyName Tichy
    76 schema:givenName Robert
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43
    78 rdf:type schema:Person
    79 sg:pub.10.1007/bf01220404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045939467
    80 https://doi.org/10.1007/bf01220404
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/s00605-006-0402-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1015657696
    83 https://doi.org/10.1007/s00605-006-0402-z
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/0022-314x(71)90001-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032649788
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/0022-314x(90)90118-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1051167769
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1090/s0002-9939-1954-0062728-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044734497
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1090/s0002-9939-1964-0160746-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032035741
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1093/qmath/hah023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059988972
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1093/qmath/hah046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059988995
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1112/blms/6.1.66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034511444
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1112/jlms/s2-12.2.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018304692
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.3336/gm.43.2.05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071148087
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.4064/aa133-4-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072178418
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.4064/cm109-1-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072181867
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.7169/facm/1229696558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073637822
    108 rdf:type schema:CreativeWork
    109 https://www.grid.ac/institutes/grid.410413.3 schema:alternateName Graz University of Technology
    110 schema:name Institute for Analysis and Computational Number Theory, Graz University of Technology, Steyrergasse 30, 8010, Graz, Austria
    111 rdf:type schema:Organization
    112 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
    113 schema:name Department of Mathematics, ETH Zurich, Raemistrasse 101, 8092, Zurich, Switzerland
    114 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...