Ontology type: schema:ScholarlyArticle
2004-02
AUTHORSShigeki Akiyama, Nertila Gjini
ABSTRACT.Let T = T(A, D) be a self-affine attractor in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathbb{R}^n $$ \end{document} defined by an integral expanding matrix A and a digit set D. In the first part of this paper, in connection with canonical number systems, we study connectedness of T when D corresponds to the set of consecutive integers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \{0, 1,\ldots, |\det(A)| - 1\} $$ \end{document} . It is shown that in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathbb{R}^3 $$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathbb{R}^4 $$ \end{document} , for any integral expanding matrix A, T(A, D) is connected. In the second part, we study connectedness of Pisot dual tiles, which play an important role in the study of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \beta $$ \end{document} -expansions, substitutions and symbolic dynamical systems. It is shown that each tile of the dual tiling generated by a Pisot unit of degree 3 is arcwise connected. This is naturally expected since the digit set consists of consecutive integers as above. However surprisingly, we found families of disconnected Pisot dual tiles of degree 4. We even give a simple necessary and sufficient condition of connectedness of the Pisot dual tiles of degree 4. Detailed proofs will be given in [4]. More... »
PAGES153-163
http://scigraph.springernature.com/pub.10.1007/s00013-003-4820-z
DOIhttp://dx.doi.org/10.1007/s00013-003-4820-z
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1040538891
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan",
"id": "http://www.grid.ac/institutes/grid.260975.f",
"name": [
"Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan"
],
"type": "Organization"
},
"familyName": "Akiyama",
"givenName": "Shigeki",
"id": "sg:person.011153327405.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Faculty of Science, Tirana University, Tirana, Albania",
"id": "http://www.grid.ac/institutes/grid.12306.36",
"name": [
"Department of Mathematics, Faculty of Science, Tirana University, Tirana, Albania"
],
"type": "Organization"
},
"familyName": "Gjini",
"givenName": "Nertila",
"id": "sg:person.013236443725.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013236443725.35"
],
"type": "Person"
}
],
"datePublished": "2004-02",
"datePublishedReg": "2004-02-01",
"description": "Abstract.Let T = T(A, D) be a self-affine attractor in \n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n\t$$ \\mathbb{R}^n $$\n\t\\end{document} \ndefined by an integral expanding matrix A and\na digit set D. In the\nfirst part of this paper, in connection with canonical number systems,\nwe study connectedness of T when \nD corresponds to the set of\nconsecutive integers \n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n\t$$ \\{0, 1,\\ldots, |\\det(A)| - 1\\} $$\n\t\\end{document} \n. It is shown that in \n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n\t$$ \\mathbb{R}^3 $$\n\t\\end{document} \nand \n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n\t$$ \\mathbb{R}^4 $$\n\t\\end{document}\n, for any integral expanding matrix A, T(A, D) is connected.\n\nIn the second part, we study connectedness of Pisot dual tiles, which\nplay an important role in the study of \n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n\t$$ \\beta $$\n\t\\end{document}\n-expansions, substitutions and\nsymbolic dynamical systems. It is shown that each tile of the dual\ntiling generated by a Pisot unit of degree 3 is arcwise connected. This\nis naturally expected since the digit set consists of consecutive\nintegers as above. However surprisingly, we found families of\ndisconnected Pisot dual tiles of degree 4. We even give a simple\nnecessary and sufficient condition of connectedness of the Pisot dual\ntiles of degree 4. Detailed proofs will be given in [4].",
"genre": "article",
"id": "sg:pub.10.1007/s00013-003-4820-z",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1052783",
"issn": [
"0003-889X",
"1420-8938"
],
"name": "Archiv der Mathematik",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "82"
}
],
"keywords": [
"important role",
"study",
"role",
"digits",
"family",
"connectedness",
"part",
"units",
"system",
"conditions",
"substitution",
"expansion",
"connection",
"second part",
"first part",
"proof",
"consist",
"set",
"degree 3",
"arcwise",
"paper",
"degree 4",
"tiles",
"set consists",
"integers",
"consecutive integers",
"tiling",
"attractors",
"matrix A",
"number system",
"sufficient conditions",
"Pisot",
"dynamical systems",
"detailed proof",
"canonical number systems",
"symbolic dynamical systems",
"Pisot units"
],
"name": "On the connectedness of self-affine attractors",
"pagination": "153-163",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1040538891"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00013-003-4820-z"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00013-003-4820-z",
"https://app.dimensions.ai/details/publication/pub.1040538891"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:52",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_387.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00013-003-4820-z"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-003-4820-z'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-003-4820-z'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-003-4820-z'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-003-4820-z'
This table displays all metadata directly associated to this object as RDF triples.
105 TRIPLES
21 PREDICATES
63 URIs
55 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00013-003-4820-z | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | N5addaafce26741909ad6a75745eb0d3c |
4 | ″ | schema:datePublished | 2004-02 |
5 | ″ | schema:datePublishedReg | 2004-02-01 |
6 | ″ | schema:description | Abstract.Let T = T(A, D) be a self-affine attractor in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathbb{R}^n $$ \end{document} defined by an integral expanding matrix A and a digit set D. In the first part of this paper, in connection with canonical number systems, we study connectedness of T when D corresponds to the set of consecutive integers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \{0, 1,\ldots, |\det(A)| - 1\} $$ \end{document} . It is shown that in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathbb{R}^3 $$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathbb{R}^4 $$ \end{document} , for any integral expanding matrix A, T(A, D) is connected. In the second part, we study connectedness of Pisot dual tiles, which play an important role in the study of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \beta $$ \end{document} -expansions, substitutions and symbolic dynamical systems. It is shown that each tile of the dual tiling generated by a Pisot unit of degree 3 is arcwise connected. This is naturally expected since the digit set consists of consecutive integers as above. However surprisingly, we found families of disconnected Pisot dual tiles of degree 4. We even give a simple necessary and sufficient condition of connectedness of the Pisot dual tiles of degree 4. Detailed proofs will be given in [4]. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N4e2685ff3a654df7ab192c5b241532aa |
11 | ″ | ″ | N62408c62484244838dcf8bdf28699659 |
12 | ″ | ″ | sg:journal.1052783 |
13 | ″ | schema:keywords | Pisot |
14 | ″ | ″ | Pisot units |
15 | ″ | ″ | arcwise |
16 | ″ | ″ | attractors |
17 | ″ | ″ | canonical number systems |
18 | ″ | ″ | conditions |
19 | ″ | ″ | connectedness |
20 | ″ | ″ | connection |
21 | ″ | ″ | consecutive integers |
22 | ″ | ″ | consist |
23 | ″ | ″ | degree 3 |
24 | ″ | ″ | degree 4 |
25 | ″ | ″ | detailed proof |
26 | ″ | ″ | digits |
27 | ″ | ″ | dynamical systems |
28 | ″ | ″ | expansion |
29 | ″ | ″ | family |
30 | ″ | ″ | first part |
31 | ″ | ″ | important role |
32 | ″ | ″ | integers |
33 | ″ | ″ | matrix A |
34 | ″ | ″ | number system |
35 | ″ | ″ | paper |
36 | ″ | ″ | part |
37 | ″ | ″ | proof |
38 | ″ | ″ | role |
39 | ″ | ″ | second part |
40 | ″ | ″ | set |
41 | ″ | ″ | set consists |
42 | ″ | ″ | study |
43 | ″ | ″ | substitution |
44 | ″ | ″ | sufficient conditions |
45 | ″ | ″ | symbolic dynamical systems |
46 | ″ | ″ | system |
47 | ″ | ″ | tiles |
48 | ″ | ″ | tiling |
49 | ″ | ″ | units |
50 | ″ | schema:name | On the connectedness of self-affine attractors |
51 | ″ | schema:pagination | 153-163 |
52 | ″ | schema:productId | N2592dfbbdff24d618b8f3b07b6184267 |
53 | ″ | ″ | N6d25681e4b7b4633b55be9be05d3c9cb |
54 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040538891 |
55 | ″ | ″ | https://doi.org/10.1007/s00013-003-4820-z |
56 | ″ | schema:sdDatePublished | 2022-05-10T09:52 |
57 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
58 | ″ | schema:sdPublisher | N675d21584fda4111a958e1d7c793efd4 |
59 | ″ | schema:url | https://doi.org/10.1007/s00013-003-4820-z |
60 | ″ | sgo:license | sg:explorer/license/ |
61 | ″ | sgo:sdDataset | articles |
62 | ″ | rdf:type | schema:ScholarlyArticle |
63 | N1db0db2c8e5043fc8fcb04533cc158d4 | rdf:first | sg:person.013236443725.35 |
64 | ″ | rdf:rest | rdf:nil |
65 | N2592dfbbdff24d618b8f3b07b6184267 | schema:name | dimensions_id |
66 | ″ | schema:value | pub.1040538891 |
67 | ″ | rdf:type | schema:PropertyValue |
68 | N4e2685ff3a654df7ab192c5b241532aa | schema:issueNumber | 2 |
69 | ″ | rdf:type | schema:PublicationIssue |
70 | N5addaafce26741909ad6a75745eb0d3c | rdf:first | sg:person.011153327405.03 |
71 | ″ | rdf:rest | N1db0db2c8e5043fc8fcb04533cc158d4 |
72 | N62408c62484244838dcf8bdf28699659 | schema:volumeNumber | 82 |
73 | ″ | rdf:type | schema:PublicationVolume |
74 | N675d21584fda4111a958e1d7c793efd4 | schema:name | Springer Nature - SN SciGraph project |
75 | ″ | rdf:type | schema:Organization |
76 | N6d25681e4b7b4633b55be9be05d3c9cb | schema:name | doi |
77 | ″ | schema:value | 10.1007/s00013-003-4820-z |
78 | ″ | rdf:type | schema:PropertyValue |
79 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
80 | ″ | schema:name | Mathematical Sciences |
81 | ″ | rdf:type | schema:DefinedTerm |
82 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
83 | ″ | schema:name | Pure Mathematics |
84 | ″ | rdf:type | schema:DefinedTerm |
85 | sg:journal.1052783 | schema:issn | 0003-889X |
86 | ″ | ″ | 1420-8938 |
87 | ″ | schema:name | Archiv der Mathematik |
88 | ″ | schema:publisher | Springer Nature |
89 | ″ | rdf:type | schema:Periodical |
90 | sg:person.011153327405.03 | schema:affiliation | grid-institutes:grid.260975.f |
91 | ″ | schema:familyName | Akiyama |
92 | ″ | schema:givenName | Shigeki |
93 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03 |
94 | ″ | rdf:type | schema:Person |
95 | sg:person.013236443725.35 | schema:affiliation | grid-institutes:grid.12306.36 |
96 | ″ | schema:familyName | Gjini |
97 | ″ | schema:givenName | Nertila |
98 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013236443725.35 |
99 | ″ | rdf:type | schema:Person |
100 | grid-institutes:grid.12306.36 | schema:alternateName | Department of Mathematics, Faculty of Science, Tirana University, Tirana, Albania |
101 | ″ | schema:name | Department of Mathematics, Faculty of Science, Tirana University, Tirana, Albania |
102 | ″ | rdf:type | schema:Organization |
103 | grid-institutes:grid.260975.f | schema:alternateName | Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan |
104 | ″ | schema:name | Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan |
105 | ″ | rdf:type | schema:Organization |