On the connectedness of self-affine attractors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-02

AUTHORS

Shigeki Akiyama, Nertila Gjini

ABSTRACT

.Let T = T(A, D) be a self-affine attractor in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathbb{R}^n $$ \end{document} defined by an integral expanding matrix A and a digit set D. In the first part of this paper, in connection with canonical number systems, we study connectedness of T when D corresponds to the set of consecutive integers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \{0, 1,\ldots, |\det(A)| - 1\} $$ \end{document} . It is shown that in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathbb{R}^3 $$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathbb{R}^4 $$ \end{document} , for any integral expanding matrix A, T(A, D) is connected. In the second part, we study connectedness of Pisot dual tiles, which play an important role in the study of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \beta $$ \end{document} -expansions, substitutions and symbolic dynamical systems. It is shown that each tile of the dual tiling generated by a Pisot unit of degree 3 is arcwise connected. This is naturally expected since the digit set consists of consecutive integers as above. However surprisingly, we found families of disconnected Pisot dual tiles of degree 4. We even give a simple necessary and sufficient condition of connectedness of the Pisot dual tiles of degree 4. Detailed proofs will be given in [4]. More... »

PAGES

153-163

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00013-003-4820-z

DOI

http://dx.doi.org/10.1007/s00013-003-4820-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040538891


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan", 
          "id": "http://www.grid.ac/institutes/grid.260975.f", 
          "name": [
            "Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akiyama", 
        "givenName": "Shigeki", 
        "id": "sg:person.011153327405.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Science, Tirana University, Tirana, Albania", 
          "id": "http://www.grid.ac/institutes/grid.12306.36", 
          "name": [
            "Department of Mathematics, Faculty of Science, Tirana University, Tirana, Albania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gjini", 
        "givenName": "Nertila", 
        "id": "sg:person.013236443725.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013236443725.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004-02", 
    "datePublishedReg": "2004-02-01", 
    "description": "Abstract.Let T = T(A, D) be a self-affine attractor in \n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n\t$$ \\mathbb{R}^n $$\n\t\\end{document} \ndefined by an integral expanding matrix A and\na digit set D. In the\nfirst part of this paper, in connection with canonical number systems,\nwe study connectedness of T when \nD corresponds to the set of\nconsecutive integers \n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n\t$$ \\{0, 1,\\ldots, |\\det(A)| - 1\\}  $$\n\t\\end{document} \n. It is shown that in \n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n\t$$ \\mathbb{R}^3 $$\n\t\\end{document}  \nand \n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n\t$$ \\mathbb{R}^4 $$\n\t\\end{document}\n, for any integral expanding matrix A, T(A, D) is connected.\n\nIn the second part, we study connectedness of Pisot dual tiles, which\nplay an important role in the study of \n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n\t$$ \\beta $$\n\t\\end{document}\n-expansions, substitutions and\nsymbolic dynamical systems. It is shown that each tile of the dual\ntiling generated by a Pisot unit of degree 3 is arcwise connected. This\nis naturally expected since the digit set consists of consecutive\nintegers as above. However surprisingly, we found families of\ndisconnected Pisot dual tiles of degree 4. We even give a simple\nnecessary and sufficient condition of connectedness of the Pisot dual\ntiles of degree 4. Detailed proofs will be given in [4].", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00013-003-4820-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052783", 
        "issn": [
          "0003-889X", 
          "1420-8938"
        ], 
        "name": "Archiv der Mathematik", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "82"
      }
    ], 
    "keywords": [
      "important role", 
      "study", 
      "role", 
      "digits", 
      "family", 
      "connectedness", 
      "part", 
      "units", 
      "system", 
      "conditions", 
      "substitution", 
      "expansion", 
      "connection", 
      "second part", 
      "first part", 
      "proof", 
      "consist", 
      "set", 
      "degree 3", 
      "arcwise", 
      "paper", 
      "degree 4", 
      "tiles", 
      "set consists", 
      "integers", 
      "consecutive integers", 
      "tiling", 
      "attractors", 
      "matrix A", 
      "number system", 
      "sufficient conditions", 
      "Pisot", 
      "dynamical systems", 
      "detailed proof", 
      "canonical number systems", 
      "symbolic dynamical systems", 
      "Pisot units"
    ], 
    "name": "On the connectedness of self-affine attractors", 
    "pagination": "153-163", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040538891"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00013-003-4820-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00013-003-4820-z", 
      "https://app.dimensions.ai/details/publication/pub.1040538891"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_387.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00013-003-4820-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00013-003-4820-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00013-003-4820-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00013-003-4820-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00013-003-4820-z'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      63 URIs      55 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00013-003-4820-z schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5addaafce26741909ad6a75745eb0d3c
4 schema:datePublished 2004-02
5 schema:datePublishedReg 2004-02-01
6 schema:description Abstract.Let T = T(A, D) be a self-affine attractor in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathbb{R}^n $$ \end{document} defined by an integral expanding matrix A and a digit set D. In the first part of this paper, in connection with canonical number systems, we study connectedness of T when D corresponds to the set of consecutive integers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \{0, 1,\ldots, |\det(A)| - 1\} $$ \end{document} . It is shown that in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathbb{R}^3 $$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathbb{R}^4 $$ \end{document} , for any integral expanding matrix A, T(A, D) is connected. In the second part, we study connectedness of Pisot dual tiles, which play an important role in the study of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \beta $$ \end{document} -expansions, substitutions and symbolic dynamical systems. It is shown that each tile of the dual tiling generated by a Pisot unit of degree 3 is arcwise connected. This is naturally expected since the digit set consists of consecutive integers as above. However surprisingly, we found families of disconnected Pisot dual tiles of degree 4. We even give a simple necessary and sufficient condition of connectedness of the Pisot dual tiles of degree 4. Detailed proofs will be given in [4].
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N4e2685ff3a654df7ab192c5b241532aa
11 N62408c62484244838dcf8bdf28699659
12 sg:journal.1052783
13 schema:keywords Pisot
14 Pisot units
15 arcwise
16 attractors
17 canonical number systems
18 conditions
19 connectedness
20 connection
21 consecutive integers
22 consist
23 degree 3
24 degree 4
25 detailed proof
26 digits
27 dynamical systems
28 expansion
29 family
30 first part
31 important role
32 integers
33 matrix A
34 number system
35 paper
36 part
37 proof
38 role
39 second part
40 set
41 set consists
42 study
43 substitution
44 sufficient conditions
45 symbolic dynamical systems
46 system
47 tiles
48 tiling
49 units
50 schema:name On the connectedness of self-affine attractors
51 schema:pagination 153-163
52 schema:productId N2592dfbbdff24d618b8f3b07b6184267
53 N6d25681e4b7b4633b55be9be05d3c9cb
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040538891
55 https://doi.org/10.1007/s00013-003-4820-z
56 schema:sdDatePublished 2022-05-10T09:52
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N675d21584fda4111a958e1d7c793efd4
59 schema:url https://doi.org/10.1007/s00013-003-4820-z
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N1db0db2c8e5043fc8fcb04533cc158d4 rdf:first sg:person.013236443725.35
64 rdf:rest rdf:nil
65 N2592dfbbdff24d618b8f3b07b6184267 schema:name dimensions_id
66 schema:value pub.1040538891
67 rdf:type schema:PropertyValue
68 N4e2685ff3a654df7ab192c5b241532aa schema:issueNumber 2
69 rdf:type schema:PublicationIssue
70 N5addaafce26741909ad6a75745eb0d3c rdf:first sg:person.011153327405.03
71 rdf:rest N1db0db2c8e5043fc8fcb04533cc158d4
72 N62408c62484244838dcf8bdf28699659 schema:volumeNumber 82
73 rdf:type schema:PublicationVolume
74 N675d21584fda4111a958e1d7c793efd4 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N6d25681e4b7b4633b55be9be05d3c9cb schema:name doi
77 schema:value 10.1007/s00013-003-4820-z
78 rdf:type schema:PropertyValue
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
83 schema:name Pure Mathematics
84 rdf:type schema:DefinedTerm
85 sg:journal.1052783 schema:issn 0003-889X
86 1420-8938
87 schema:name Archiv der Mathematik
88 schema:publisher Springer Nature
89 rdf:type schema:Periodical
90 sg:person.011153327405.03 schema:affiliation grid-institutes:grid.260975.f
91 schema:familyName Akiyama
92 schema:givenName Shigeki
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03
94 rdf:type schema:Person
95 sg:person.013236443725.35 schema:affiliation grid-institutes:grid.12306.36
96 schema:familyName Gjini
97 schema:givenName Nertila
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013236443725.35
99 rdf:type schema:Person
100 grid-institutes:grid.12306.36 schema:alternateName Department of Mathematics, Faculty of Science, Tirana University, Tirana, Albania
101 schema:name Department of Mathematics, Faculty of Science, Tirana University, Tirana, Albania
102 rdf:type schema:Organization
103 grid-institutes:grid.260975.f schema:alternateName Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan
104 schema:name Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...