The combination of metabolic syndrome and inflammation increased the risk of colorectal cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-06-18

AUTHORS

Tong Liu, Yali Fan, Qingsong Zhang, Yiming Wang, Nan Yao, Mengmeng Song, Qi Zhang, Liying Cao, Chunhua Song, Hanping Shi

ABSTRACT

BackgroundInflammation and metabolic syndrome (MetS) may act synergistically and possibly accelerate the initiation and progression of colorectal cancer (CRC). We prospectively examined the joint effect of MetS and inflammation on the risk of CRC.MethodsWe studied 92,770 individuals from the Kailuan study. MetS was defined based on the presence of three or more of the following components. (1) high glucose: FPG > 5.6 mmol/L; (2) high blood pressure: SBP ≥ 130 mmHg or DBP ≥ 85 mmHg; (3) high triglycerides: triglycerides > 1.69 mmol/L; (4) low HDL-C: HDL-C < 1.04 mmol/L in men or 1.29 mmol/L in women; and (5) visceral adiposity: waist circumference ≥ 85 cm in men or 80 cm in women. Inflammation was defined as hs-CRP ≥ 3 mg/L. We divided participants into four groups for the primary exposure according to the presence/absence of inflammation and presence/absence of MetS. Cox proportional hazards regression models were used to evaluate the association of MetS and/or inflammation with the risk of CRC.ResultsCompared with metabolically healthy noninflammatory individuals, inflammatory participants without MetS and inflammatory participants with MetS were associated with a 1.3-fold and 4.18-fold increased risk of CRC with corresponding HRs (95% CI) of 1.34 (1.09, 1.64) and 4.18 (3.11, 5.62), respectively. The combination of MetS and inflammation was associated with the highest risk of CRC in all subgroups, especially among participants who were female, in younger age, and obese. Sensitivity analyses further validated our primary findings.ConclusionsWe found the combination of MetS and inflammation could significantly increase the risk of CRC. Including CRP in the diagnosis of MetS may help to identify additional high-risk participants who should be targeted for early diagnosis and prevention of CRC.Trial registration Kailuan study, ChiCTR–TNRC–11001489. Registered 24 August, 2011-Retrospectively registered, http:// www.chictr.org.cn/showprojen.aspx?proj=8050 More... »

PAGES

899-909

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00011-022-01597-9

DOI

http://dx.doi.org/10.1007/s00011-022-01597-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148760828

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35715516


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Inflammation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Syndrome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Triglycerides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Waist Circumference", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Cancer FSMP for State Market Regulation, 100038, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, 100038, Beijing, China", 
            "Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, 100038, Beijing, China", 
            "Key Laboratory of Cancer FSMP for State Market Regulation, 100038, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Tong", 
        "id": "sg:person.013510011163.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013510011163.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Aerospace Center Hospital, 100038, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.464204.0", 
          "name": [
            "Department of General Surgery, Aerospace Center Hospital, 100038, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Yali", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Kailuan General Hospital, 063000, Tangshan, China", 
          "id": "http://www.grid.ac/institutes/grid.459652.9", 
          "name": [
            "Department of General Surgery, Kailuan General Hospital, 063000, Tangshan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Qingsong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hepatological Surgery, Kailuan General Hospital, 063000, Tangshan, China", 
          "id": "http://www.grid.ac/institutes/grid.459652.9", 
          "name": [
            "Department of Hepatological Surgery, Kailuan General Hospital, 063000, Tangshan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yiming", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Aerospace Center Hospital, 100038, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.464204.0", 
          "name": [
            "Department of General Surgery, Aerospace Center Hospital, 100038, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Nan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Cancer FSMP for State Market Regulation, 100038, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, 100038, Beijing, China", 
            "Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, 100038, Beijing, China", 
            "Key Laboratory of Cancer FSMP for State Market Regulation, 100038, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Mengmeng", 
        "id": "sg:person.016122461375.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016122461375.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Cancer FSMP for State Market Regulation, 100038, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, 100038, Beijing, China", 
            "Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, 100038, Beijing, China", 
            "Key Laboratory of Cancer FSMP for State Market Regulation, 100038, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Qi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hepatological Surgery, Kailuan General Hospital, 063000, Tangshan, China", 
          "id": "http://www.grid.ac/institutes/grid.459652.9", 
          "name": [
            "Department of Hepatological Surgery, Kailuan General Hospital, 063000, Tangshan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Liying", 
        "id": "sg:person.01015231767.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015231767.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 450001, Zhengzhou, Henan, China", 
          "id": "http://www.grid.ac/institutes/grid.207374.5", 
          "name": [
            "Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 450001, Zhengzhou, Henan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Chunhua", 
        "id": "sg:person.0663604514.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663604514.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Cancer FSMP for State Market Regulation, 100038, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, 100038, Beijing, China", 
            "Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, 100038, Beijing, China", 
            "Key Laboratory of Cancer FSMP for State Market Regulation, 100038, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Hanping", 
        "id": "sg:person.015423556626.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015423556626.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12020-013-9939-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053185547", 
          "https://doi.org/10.1007/s12020-013-9939-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejcn.2016.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041715514", 
          "https://doi.org/10.1038/ejcn.2016.111"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-18", 
    "datePublishedReg": "2022-06-18", 
    "description": "BackgroundInflammation and metabolic syndrome (MetS) may act synergistically and possibly accelerate the initiation and progression of colorectal cancer (CRC). We prospectively examined the joint effect of MetS and inflammation on the risk of CRC.MethodsWe studied 92,770 individuals from the Kailuan study. MetS was defined based on the presence of three or more of the following components. (1) high glucose: FPG\u2009>\u20095.6\u00a0mmol/L; (2) high blood pressure: SBP\u2009\u2265\u2009130\u00a0mmHg or DBP\u2009\u2265\u200985\u00a0mmHg; (3) high triglycerides: triglycerides\u2009>\u20091.69\u00a0mmol/L; (4) low HDL-C: HDL-C\u2009<\u20091.04\u00a0mmol/L in men or 1.29\u00a0mmol/L in women; and (5) visceral adiposity: waist circumference\u2009\u2265\u200985\u00a0cm in men or 80\u00a0cm in women. Inflammation was defined as hs-CRP\u2009\u2265\u20093\u00a0mg/L. We divided participants into four groups for the primary exposure according to the presence/absence of inflammation and presence/absence of MetS. Cox proportional hazards regression models were used to evaluate the association of MetS and/or inflammation with the risk of CRC.ResultsCompared with metabolically healthy noninflammatory individuals, inflammatory participants without MetS and inflammatory participants with MetS were associated with a 1.3-fold and 4.18-fold increased risk of CRC with corresponding HRs (95% CI) of 1.34 (1.09, 1.64) and 4.18 (3.11, 5.62), respectively. The combination of MetS and inflammation was associated with the highest risk of CRC in all subgroups, especially among participants who were female, in younger age, and obese. Sensitivity analyses further validated our primary findings.ConclusionsWe found the combination of MetS and inflammation could significantly increase the risk of CRC. Including CRP in the diagnosis of MetS may help to identify additional high-risk participants who should be targeted for early diagnosis and prevention of CRC.Trial registration Kailuan study, ChiCTR\u2013TNRC\u201311001489. Registered 24 August, 2011-Retrospectively registered, http:// www.chictr.org.cn/showprojen.aspx?proj=8050", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00011-022-01597-9", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1012133", 
        "issn": [
          "1023-3830", 
          "1420-908X"
        ], 
        "name": "Inflammation Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7-8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "71"
      }
    ], 
    "keywords": [
      "risk of CRC", 
      "colorectal cancer", 
      "combination of Met", 
      "Kailuan study", 
      "metabolic syndrome", 
      "proportional hazards regression models", 
      "prevention of CRC", 
      "diagnosis of MetS", 
      "high blood pressure", 
      "association of MetS", 
      "hazards regression models", 
      "high-risk participants", 
      "hs-CRP", 
      "low HDL", 
      "visceral adiposity", 
      "blood pressure", 
      "high triglycerides", 
      "waist circumference", 
      "corresponding HRs", 
      "primary exposure", 
      "early diagnosis", 
      "high risk", 
      "inflammation", 
      "younger age", 
      "high glucose", 
      "presence/absence", 
      "MetS", 
      "risk", 
      "mmHg", 
      "syndrome", 
      "triglycerides", 
      "HDL", 
      "cancer", 
      "diagnosis", 
      "women", 
      "regression models", 
      "participants", 
      "men", 
      "MetS.", 
      "BackgroundInflammation", 
      "obese", 
      "adiposity", 
      "SBP", 
      "CRP", 
      "FPG", 
      "ResultsCompared", 
      "MethodsWe", 
      "individuals", 
      "primary findings", 
      "progression", 
      "circumference", 
      "prevention", 
      "age", 
      "subgroups", 
      "DBP", 
      "absence", 
      "study", 
      "association", 
      "hr", 
      "ConclusionsWe", 
      "exposure", 
      "glucose", 
      "joint effects", 
      "combination", 
      "group", 
      "initiation", 
      "findings", 
      "sensitivity analysis", 
      "www", 
      "effect", 
      "presence", 
      "pressure", 
      "aspx", 
      "analysis", 
      "components", 
      "model"
    ], 
    "name": "The combination of metabolic syndrome and inflammation increased the risk of colorectal cancer", 
    "pagination": "899-909", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148760828"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00011-022-01597-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35715516"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00011-022-01597-9", 
      "https://app.dimensions.ai/details/publication/pub.1148760828"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_950.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00011-022-01597-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00011-022-01597-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00011-022-01597-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00011-022-01597-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00011-022-01597-9'


 

This table displays all metadata directly associated to this object as RDF triples.

256 TRIPLES      21 PREDICATES      113 URIs      102 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00011-022-01597-9 schema:about N3e6dc81ca24e43c09886b2891488bff7
2 N4280202241fb4e62b48daa88719ce500
3 N553a0917dd7843d695186d7082e61fa6
4 N6a59aa65048444ecb0eadfed60851d5b
5 N9a228732f15f4233b7fe2357af5a34d5
6 N9d4d3fdead1a488fae9d25c3b6290d17
7 Nc0e4c68c0ee94dab9c1bcbdd8c79c8b3
8 Nd5571c97a2744b2cb1d9d9567263d2b5
9 Ne3f75e2a5ecc4c7db552c4536eab24c2
10 anzsrc-for:11
11 anzsrc-for:1103
12 anzsrc-for:1117
13 schema:author N12e25170abac47f08aa9fcc872f75f76
14 schema:citation sg:pub.10.1007/s12020-013-9939-5
15 sg:pub.10.1038/ejcn.2016.111
16 schema:datePublished 2022-06-18
17 schema:datePublishedReg 2022-06-18
18 schema:description BackgroundInflammation and metabolic syndrome (MetS) may act synergistically and possibly accelerate the initiation and progression of colorectal cancer (CRC). We prospectively examined the joint effect of MetS and inflammation on the risk of CRC.MethodsWe studied 92,770 individuals from the Kailuan study. MetS was defined based on the presence of three or more of the following components. (1) high glucose: FPG > 5.6 mmol/L; (2) high blood pressure: SBP ≥ 130 mmHg or DBP ≥ 85 mmHg; (3) high triglycerides: triglycerides > 1.69 mmol/L; (4) low HDL-C: HDL-C < 1.04 mmol/L in men or 1.29 mmol/L in women; and (5) visceral adiposity: waist circumference ≥ 85 cm in men or 80 cm in women. Inflammation was defined as hs-CRP ≥ 3 mg/L. We divided participants into four groups for the primary exposure according to the presence/absence of inflammation and presence/absence of MetS. Cox proportional hazards regression models were used to evaluate the association of MetS and/or inflammation with the risk of CRC.ResultsCompared with metabolically healthy noninflammatory individuals, inflammatory participants without MetS and inflammatory participants with MetS were associated with a 1.3-fold and 4.18-fold increased risk of CRC with corresponding HRs (95% CI) of 1.34 (1.09, 1.64) and 4.18 (3.11, 5.62), respectively. The combination of MetS and inflammation was associated with the highest risk of CRC in all subgroups, especially among participants who were female, in younger age, and obese. Sensitivity analyses further validated our primary findings.ConclusionsWe found the combination of MetS and inflammation could significantly increase the risk of CRC. Including CRP in the diagnosis of MetS may help to identify additional high-risk participants who should be targeted for early diagnosis and prevention of CRC.Trial registration Kailuan study, ChiCTR–TNRC–11001489. Registered 24 August, 2011-Retrospectively registered, http:// www.chictr.org.cn/showprojen.aspx?proj=8050
19 schema:genre article
20 schema:isAccessibleForFree true
21 schema:isPartOf Ndeff6378fc0e4cd0bfd70d767331ba53
22 Neef3563e7d1d40f2a8f261dd5555cf50
23 sg:journal.1012133
24 schema:keywords BackgroundInflammation
25 CRP
26 ConclusionsWe
27 DBP
28 FPG
29 HDL
30 Kailuan study
31 MetS
32 MetS.
33 MethodsWe
34 ResultsCompared
35 SBP
36 absence
37 adiposity
38 age
39 analysis
40 aspx
41 association
42 association of MetS
43 blood pressure
44 cancer
45 circumference
46 colorectal cancer
47 combination
48 combination of Met
49 components
50 corresponding HRs
51 diagnosis
52 diagnosis of MetS
53 early diagnosis
54 effect
55 exposure
56 findings
57 glucose
58 group
59 hazards regression models
60 high blood pressure
61 high glucose
62 high risk
63 high triglycerides
64 high-risk participants
65 hr
66 hs-CRP
67 individuals
68 inflammation
69 initiation
70 joint effects
71 low HDL
72 men
73 metabolic syndrome
74 mmHg
75 model
76 obese
77 participants
78 presence
79 presence/absence
80 pressure
81 prevention
82 prevention of CRC
83 primary exposure
84 primary findings
85 progression
86 proportional hazards regression models
87 regression models
88 risk
89 risk of CRC
90 sensitivity analysis
91 study
92 subgroups
93 syndrome
94 triglycerides
95 visceral adiposity
96 waist circumference
97 women
98 www
99 younger age
100 schema:name The combination of metabolic syndrome and inflammation increased the risk of colorectal cancer
101 schema:pagination 899-909
102 schema:productId N1a1fe44d64d8470c8403644518c7ba10
103 N9aa02c6b786547f68c88a0b25be956cf
104 Nceefbc540806451286fa503413f801ab
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148760828
106 https://doi.org/10.1007/s00011-022-01597-9
107 schema:sdDatePublished 2022-10-01T06:50
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher Nb7c938c771f34ac389d81764aec02284
110 schema:url https://doi.org/10.1007/s00011-022-01597-9
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N0971d2ba9b5b4c2bae9e0e82be771dc7 schema:affiliation grid-institutes:grid.464204.0
115 schema:familyName Fan
116 schema:givenName Yali
117 rdf:type schema:Person
118 N12e25170abac47f08aa9fcc872f75f76 rdf:first sg:person.013510011163.60
119 rdf:rest N4a43566efcf346698382e1e4127d41f6
120 N1a1fe44d64d8470c8403644518c7ba10 schema:name pubmed_id
121 schema:value 35715516
122 rdf:type schema:PropertyValue
123 N2550ebe3c5b14852a8f86a4def95af67 schema:affiliation grid-institutes:grid.459652.9
124 schema:familyName Zhang
125 schema:givenName Qingsong
126 rdf:type schema:Person
127 N265df66fb78446fd8e2efb222681a73b rdf:first sg:person.0663604514.63
128 rdf:rest Nabafcbd6fbb0416197f582a268f169c7
129 N3247a97c2ecc4ed7a4d406ca214bdb0d rdf:first sg:person.01015231767.89
130 rdf:rest N265df66fb78446fd8e2efb222681a73b
131 N3d0426a9ca4e4fcd8f3abb02006db10a schema:affiliation grid-institutes:grid.464204.0
132 schema:familyName Yao
133 schema:givenName Nan
134 rdf:type schema:Person
135 N3e6dc81ca24e43c09886b2891488bff7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Inflammation
137 rdf:type schema:DefinedTerm
138 N4280202241fb4e62b48daa88719ce500 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Male
140 rdf:type schema:DefinedTerm
141 N4a43566efcf346698382e1e4127d41f6 rdf:first N0971d2ba9b5b4c2bae9e0e82be771dc7
142 rdf:rest Nbd2b658515f94746854d1188b53ab78f
143 N553a0917dd7843d695186d7082e61fa6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Triglycerides
145 rdf:type schema:DefinedTerm
146 N6a59aa65048444ecb0eadfed60851d5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Waist Circumference
148 rdf:type schema:DefinedTerm
149 N6faba4cb04d542d1a6637a6e5f95868a rdf:first sg:person.016122461375.67
150 rdf:rest N7b11f25cbd7f4f37988af61e48a7c82c
151 N7b11f25cbd7f4f37988af61e48a7c82c rdf:first N9915638ad5e44ffaa721c254a9e849c4
152 rdf:rest N3247a97c2ecc4ed7a4d406ca214bdb0d
153 N7fb37d71858a4e1ea04641bd95e2702d schema:affiliation grid-institutes:grid.459652.9
154 schema:familyName Wang
155 schema:givenName Yiming
156 rdf:type schema:Person
157 N9915638ad5e44ffaa721c254a9e849c4 schema:affiliation grid-institutes:None
158 schema:familyName Zhang
159 schema:givenName Qi
160 rdf:type schema:Person
161 N9a228732f15f4233b7fe2357af5a34d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Metabolic Syndrome
163 rdf:type schema:DefinedTerm
164 N9aa02c6b786547f68c88a0b25be956cf schema:name doi
165 schema:value 10.1007/s00011-022-01597-9
166 rdf:type schema:PropertyValue
167 N9d4d3fdead1a488fae9d25c3b6290d17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Colorectal Neoplasms
169 rdf:type schema:DefinedTerm
170 N9d6056aab92e426cb9303942e8fd75dd rdf:first N3d0426a9ca4e4fcd8f3abb02006db10a
171 rdf:rest N6faba4cb04d542d1a6637a6e5f95868a
172 N9fb737e02bec45789e1ed835196a873d rdf:first N7fb37d71858a4e1ea04641bd95e2702d
173 rdf:rest N9d6056aab92e426cb9303942e8fd75dd
174 Nabafcbd6fbb0416197f582a268f169c7 rdf:first sg:person.015423556626.74
175 rdf:rest rdf:nil
176 Nb7c938c771f34ac389d81764aec02284 schema:name Springer Nature - SN SciGraph project
177 rdf:type schema:Organization
178 Nbd2b658515f94746854d1188b53ab78f rdf:first N2550ebe3c5b14852a8f86a4def95af67
179 rdf:rest N9fb737e02bec45789e1ed835196a873d
180 Nc0e4c68c0ee94dab9c1bcbdd8c79c8b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Female
182 rdf:type schema:DefinedTerm
183 Nceefbc540806451286fa503413f801ab schema:name dimensions_id
184 schema:value pub.1148760828
185 rdf:type schema:PropertyValue
186 Nd5571c97a2744b2cb1d9d9567263d2b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Humans
188 rdf:type schema:DefinedTerm
189 Ndeff6378fc0e4cd0bfd70d767331ba53 schema:issueNumber 7-8
190 rdf:type schema:PublicationIssue
191 Ne3f75e2a5ecc4c7db552c4536eab24c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Risk Factors
193 rdf:type schema:DefinedTerm
194 Neef3563e7d1d40f2a8f261dd5555cf50 schema:volumeNumber 71
195 rdf:type schema:PublicationVolume
196 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
197 schema:name Medical and Health Sciences
198 rdf:type schema:DefinedTerm
199 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
200 schema:name Clinical Sciences
201 rdf:type schema:DefinedTerm
202 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
203 schema:name Public Health and Health Services
204 rdf:type schema:DefinedTerm
205 sg:journal.1012133 schema:issn 1023-3830
206 1420-908X
207 schema:name Inflammation Research
208 schema:publisher Springer Nature
209 rdf:type schema:Periodical
210 sg:person.01015231767.89 schema:affiliation grid-institutes:grid.459652.9
211 schema:familyName Cao
212 schema:givenName Liying
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015231767.89
214 rdf:type schema:Person
215 sg:person.013510011163.60 schema:affiliation grid-institutes:None
216 schema:familyName Liu
217 schema:givenName Tong
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013510011163.60
219 rdf:type schema:Person
220 sg:person.015423556626.74 schema:affiliation grid-institutes:None
221 schema:familyName Shi
222 schema:givenName Hanping
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015423556626.74
224 rdf:type schema:Person
225 sg:person.016122461375.67 schema:affiliation grid-institutes:None
226 schema:familyName Song
227 schema:givenName Mengmeng
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016122461375.67
229 rdf:type schema:Person
230 sg:person.0663604514.63 schema:affiliation grid-institutes:grid.207374.5
231 schema:familyName Song
232 schema:givenName Chunhua
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663604514.63
234 rdf:type schema:Person
235 sg:pub.10.1007/s12020-013-9939-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053185547
236 https://doi.org/10.1007/s12020-013-9939-5
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/ejcn.2016.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041715514
239 https://doi.org/10.1038/ejcn.2016.111
240 rdf:type schema:CreativeWork
241 grid-institutes:None schema:alternateName Key Laboratory of Cancer FSMP for State Market Regulation, 100038, Beijing, China
242 schema:name Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, 100038, Beijing, China
243 Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, 100038, Beijing, China
244 Key Laboratory of Cancer FSMP for State Market Regulation, 100038, Beijing, China
245 rdf:type schema:Organization
246 grid-institutes:grid.207374.5 schema:alternateName Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 450001, Zhengzhou, Henan, China
247 schema:name Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 450001, Zhengzhou, Henan, China
248 rdf:type schema:Organization
249 grid-institutes:grid.459652.9 schema:alternateName Department of General Surgery, Kailuan General Hospital, 063000, Tangshan, China
250 Department of Hepatological Surgery, Kailuan General Hospital, 063000, Tangshan, China
251 schema:name Department of General Surgery, Kailuan General Hospital, 063000, Tangshan, China
252 Department of Hepatological Surgery, Kailuan General Hospital, 063000, Tangshan, China
253 rdf:type schema:Organization
254 grid-institutes:grid.464204.0 schema:alternateName Department of General Surgery, Aerospace Center Hospital, 100038, Beijing, China
255 schema:name Department of General Surgery, Aerospace Center Hospital, 100038, Beijing, China
256 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...