Asymptotic analysis of a class of functional equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-02

AUTHORS

G. Derfel, J. M. Thuswaldner, R. F. Tichy, F. Vogl

ABSTRACT

The aim of this paper is to solve the q-difference equation G (z) P1 (z) = G (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \lambda $\end{document}z) P2 (z) + P0 (z) asymptotically, where the coefficients are entire functions of finite genus. We solve this equation by two methods: by a Mellin transform approach and as an application of C. R. Adams' classical theory of q-difference equations. More... »

PAGES

91-105

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s000100050022

DOI

http://dx.doi.org/10.1007/s000100050022

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011453555


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ben-Gurion University of the Negev", 
          "id": "https://www.grid.ac/institutes/grid.7489.2", 
          "name": [
            "Dept. of Mathematics and Computer Science, Ben Gurion University, P. O. Box 653, Beer Sheave 84105, Israel, IL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Derfel", 
        "givenName": "G.", 
        "id": "sg:person.011307470263.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011307470263.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institut f\u00fcr Mathematik, TU Graz, Steyrergasse 30/II, A-8010 Graz, Austria, AT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thuswaldner", 
        "givenName": "J. M.", 
        "id": "sg:person.011406664737.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011406664737.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institut f\u00fcr Mathematik, TU Graz, Steyrergasse 30/II, A-8010 Graz, Austria, AT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tichy", 
        "givenName": "R. F.", 
        "id": "sg:person.015312676677.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Abt. F. Techn. Mathematik, TU Wien, Wiedner Hauptstra\u00dfe 8-10, A-1040 Wien, Austria, AT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vogl", 
        "givenName": "F.", 
        "id": "sg:person.011641256457.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011641256457.39"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998-02", 
    "datePublishedReg": "1998-02-01", 
    "description": "The aim of this paper is to solve the q-difference equation G (z) P1 (z) = G (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $ \\lambda $\\end{document}z) P2 (z) + P0 (z) asymptotically, where the coefficients are entire functions of finite genus. We solve this equation by two methods: by a Mellin transform approach and as an application of C. R. Adams' classical theory of q-difference equations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s000100050022", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136868", 
        "issn": [
          "0001-9054", 
          "1420-8903"
        ], 
        "name": "Aequationes mathematicae", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "Asymptotic analysis of a class of functional equations", 
    "pagination": "91-105", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3691b3f0c9f7848cb1dd636596d7827703ff8a02058c61501a676bb655420bb5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s000100050022"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011453555"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s000100050022", 
      "https://app.dimensions.ai/details/publication/pub.1011453555"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s000100050022"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s000100050022'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s000100050022'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s000100050022'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s000100050022'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s000100050022 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N71b803e5fed74f49b8a7b225622e0df0
4 schema:datePublished 1998-02
5 schema:datePublishedReg 1998-02-01
6 schema:description The aim of this paper is to solve the q-difference equation G (z) P1 (z) = G (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \lambda $\end{document}z) P2 (z) + P0 (z) asymptotically, where the coefficients are entire functions of finite genus. We solve this equation by two methods: by a Mellin transform approach and as an application of C. R. Adams' classical theory of q-difference equations.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Nbd87bf35f0b247fc90ed34d06cd1bdeb
11 Ndd06ebdd51804034a608f904223168bc
12 sg:journal.1136868
13 schema:name Asymptotic analysis of a class of functional equations
14 schema:pagination 91-105
15 schema:productId N0c54aa5b6c20459e9e56e31b1c1019d0
16 N62f267120a854f0eb7e9179830317b42
17 Nce5d268f29ae44239f97d2fd15903850
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011453555
19 https://doi.org/10.1007/s000100050022
20 schema:sdDatePublished 2019-04-10T14:05
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N0828542a978346b6b39dd8c1580cdd2f
23 schema:url http://link.springer.com/10.1007/s000100050022
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0828542a978346b6b39dd8c1580cdd2f schema:name Springer Nature - SN SciGraph project
28 rdf:type schema:Organization
29 N0c54aa5b6c20459e9e56e31b1c1019d0 schema:name dimensions_id
30 schema:value pub.1011453555
31 rdf:type schema:PropertyValue
32 N2fc6789a9a164ea7bc9acbf7aced4240 rdf:first sg:person.015312676677.43
33 rdf:rest Na9bfb4676cc74628a2e80baae476ffdf
34 N571db2913edf451987cc17ddb947c6f2 rdf:first sg:person.011406664737.45
35 rdf:rest N2fc6789a9a164ea7bc9acbf7aced4240
36 N62f267120a854f0eb7e9179830317b42 schema:name readcube_id
37 schema:value 3691b3f0c9f7848cb1dd636596d7827703ff8a02058c61501a676bb655420bb5
38 rdf:type schema:PropertyValue
39 N71b803e5fed74f49b8a7b225622e0df0 rdf:first sg:person.011307470263.31
40 rdf:rest N571db2913edf451987cc17ddb947c6f2
41 Na9bfb4676cc74628a2e80baae476ffdf rdf:first sg:person.011641256457.39
42 rdf:rest rdf:nil
43 Nbd87bf35f0b247fc90ed34d06cd1bdeb schema:issueNumber 1
44 rdf:type schema:PublicationIssue
45 Nce5d268f29ae44239f97d2fd15903850 schema:name doi
46 schema:value 10.1007/s000100050022
47 rdf:type schema:PropertyValue
48 Ndd06ebdd51804034a608f904223168bc schema:volumeNumber 55
49 rdf:type schema:PublicationVolume
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1136868 schema:issn 0001-9054
57 1420-8903
58 schema:name Aequationes mathematicae
59 rdf:type schema:Periodical
60 sg:person.011307470263.31 schema:affiliation https://www.grid.ac/institutes/grid.7489.2
61 schema:familyName Derfel
62 schema:givenName G.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011307470263.31
64 rdf:type schema:Person
65 sg:person.011406664737.45 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
66 schema:familyName Thuswaldner
67 schema:givenName J. M.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011406664737.45
69 rdf:type schema:Person
70 sg:person.011641256457.39 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
71 schema:familyName Vogl
72 schema:givenName F.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011641256457.39
74 rdf:type schema:Person
75 sg:person.015312676677.43 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
76 schema:familyName Tichy
77 schema:givenName R. F.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43
79 rdf:type schema:Person
80 https://www.grid.ac/institutes/grid.410413.3 schema:alternateName Graz University of Technology
81 schema:name Institut für Mathematik, TU Graz, Steyrergasse 30/II, A-8010 Graz, Austria, AT
82 rdf:type schema:Organization
83 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
84 schema:name Abt. F. Techn. Mathematik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria, AT
85 rdf:type schema:Organization
86 https://www.grid.ac/institutes/grid.7489.2 schema:alternateName Ben-Gurion University of the Negev
87 schema:name Dept. of Mathematics and Computer Science, Ben Gurion University, P. O. Box 653, Beer Sheave 84105, Israel, IL
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...