A Tingley’s type problem in n-normed spaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-05

AUTHORS

Xujian Huang, Dongni Tan

ABSTRACT

This paper solves a Tingley’s type problem in n-normed spaces and states that for n≥2, every n-isometry on the unit sphere of an n-normed space is an n-isometry on the whole space except the origin 0. Also, using analytical approach we give a short proof to show that for n≥3, any mapping which preserves n-norms of values one and zero is, up to pointwise multiplication by ±1-, a linear n-isometry. This gives a Wigner-type theorem in n-normed spaces which was proven in a recent paper. More... »

PAGES

1-14

References to SciGraph publications

Journal

TITLE

Aequationes mathematicae

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00010-019-00637-w

DOI

http://dx.doi.org/10.1007/s00010-019-00637-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112540490


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tianjin University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.265025.6", 
          "name": [
            "Department of Mathematics, Tianjin University of Technology, 300384, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Xujian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.265025.6", 
          "name": [
            "Department of Mathematics, Tianjin University of Technology, 300384, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Dongni", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1014933313332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000056646", 
          "https://doi.org/10.1023/a:1014933313332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01818323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006286658", 
          "https://doi.org/10.1007/bf01818323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01818323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006286658", 
          "https://doi.org/10.1007/bf01818323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4877(04)80012-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008994058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.na.2008.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010223718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2006.04.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020090471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00147942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022065252", 
          "https://doi.org/10.1007/bf00147942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00147942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022065252", 
          "https://doi.org/10.1007/bf00147942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19891400121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025607145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.na.2004.07.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028999191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11425-009-0156-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029497480", 
          "https://doi.org/10.1007/s11425-009-0156-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11425-009-0156-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029497480", 
          "https://doi.org/10.1007/s11425-009-0156-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2012.06.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034839630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19690400114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036903193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19640280102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039179696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2013.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043229613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2013.03.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044012547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-663-02555-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046362779", 
          "https://doi.org/10.1007/978-3-663-02555-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-663-02555-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046362779", 
          "https://doi.org/10.1007/978-3-663-02555-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.na.2009.09.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049216140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19891430119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050526071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.2002.3970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053020385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.2002.3970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053020385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002200050799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053110757", 
          "https://doi.org/10.1007/s002200050799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/sm219-2-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072185408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00010-017-0478-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084517162", 
          "https://doi.org/10.1007/s00010-017-0478-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00010-017-0478-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084517162", 
          "https://doi.org/10.1007/s00010-017-0478-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2017.04.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085074032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2017.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085915635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/dema-1977-0115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100304398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00010-018-0539-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101320758", 
          "https://doi.org/10.1007/s00010-018-0539-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00010-018-0539-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101320758", 
          "https://doi.org/10.1007/s00010-018-0539-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00010-018-0539-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101320758", 
          "https://doi.org/10.1007/s00010-018-0539-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2018.05.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104262333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2018.06.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105070207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14232/actasm-018-255-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105368765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11425-017-9188-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106542614", 
          "https://doi.org/10.1007/s11425-017-9188-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2018.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106706201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109411041", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420010206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109411041"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-05", 
    "datePublishedReg": "2019-03-05", 
    "description": "This paper solves a Tingley\u2019s type problem in n-normed spaces and states that for n\u22652, every n-isometry on the unit sphere of an n-normed space is an n-isometry on the whole space except the origin 0. Also, using analytical approach we give a short proof to show that for n\u22653, any mapping which preserves n-norms of values one and zero is, up to pointwise multiplication by \u00b11-, a linear n-isometry. This gives a Wigner-type theorem in n-normed spaces which was proven in a recent paper.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00010-019-00637-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136868", 
        "issn": [
          "0001-9054", 
          "1420-8903"
        ], 
        "name": "Aequationes mathematicae", 
        "type": "Periodical"
      }
    ], 
    "name": "A Tingley\u2019s type problem in n-normed spaces", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3cbeee38af5e5bd003ca607b8de48401deb7b30d56c71626a548ca393ac5a7d1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00010-019-00637-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112540490"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00010-019-00637-w", 
      "https://app.dimensions.ai/details/publication/pub.1112540490"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60342_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00010-019-00637-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00010-019-00637-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00010-019-00637-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00010-019-00637-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00010-019-00637-w'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      56 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00010-019-00637-w schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N75533ee360964edea60212dc3f3ec19b
4 schema:citation sg:pub.10.1007/978-3-663-02555-9
5 sg:pub.10.1007/bf00147942
6 sg:pub.10.1007/bf01818323
7 sg:pub.10.1007/s00010-017-0478-7
8 sg:pub.10.1007/s00010-018-0539-6
9 sg:pub.10.1007/s002200050799
10 sg:pub.10.1007/s11425-009-0156-x
11 sg:pub.10.1007/s11425-017-9188-6
12 sg:pub.10.1023/a:1014933313332
13 https://app.dimensions.ai/details/publication/pub.1109411041
14 https://doi.org/10.1002/mana.19640280102
15 https://doi.org/10.1002/mana.19690400114
16 https://doi.org/10.1002/mana.19891400121
17 https://doi.org/10.1002/mana.19891430119
18 https://doi.org/10.1006/jfan.2002.3970
19 https://doi.org/10.1016/j.aim.2018.08.018
20 https://doi.org/10.1016/j.jmaa.2006.04.053
21 https://doi.org/10.1016/j.jmaa.2012.06.031
22 https://doi.org/10.1016/j.jmaa.2013.03.024
23 https://doi.org/10.1016/j.jmaa.2017.06.002
24 https://doi.org/10.1016/j.jmaa.2018.05.062
25 https://doi.org/10.1016/j.jmaa.2018.06.050
26 https://doi.org/10.1016/j.laa.2017.04.024
27 https://doi.org/10.1016/j.na.2004.07.046
28 https://doi.org/10.1016/j.na.2008.02.002
29 https://doi.org/10.1016/j.na.2009.09.029
30 https://doi.org/10.1016/j.physleta.2013.08.017
31 https://doi.org/10.1016/s0034-4877(04)80012-0
32 https://doi.org/10.1201/9781420010206
33 https://doi.org/10.14232/actasm-018-255-0
34 https://doi.org/10.1515/dema-1977-0115
35 https://doi.org/10.4064/sm219-2-4
36 schema:datePublished 2019-03-05
37 schema:datePublishedReg 2019-03-05
38 schema:description This paper solves a Tingley’s type problem in n-normed spaces and states that for n≥2, every n-isometry on the unit sphere of an n-normed space is an n-isometry on the whole space except the origin 0. Also, using analytical approach we give a short proof to show that for n≥3, any mapping which preserves n-norms of values one and zero is, up to pointwise multiplication by ±1-, a linear n-isometry. This gives a Wigner-type theorem in n-normed spaces which was proven in a recent paper.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf sg:journal.1136868
43 schema:name A Tingley’s type problem in n-normed spaces
44 schema:pagination 1-14
45 schema:productId N68fa77c18689438c824b0da1755bd202
46 Nbb8e2ebb4ac343d5a6262e6393369d1e
47 Nd094e5282f6e4119b15b26938fe897e8
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112540490
49 https://doi.org/10.1007/s00010-019-00637-w
50 schema:sdDatePublished 2019-04-11T11:01
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Ndc33871d3ffa4de5af8b8b508a166f5f
53 schema:url https://link.springer.com/10.1007%2Fs00010-019-00637-w
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N3193f713c5bd4666a5550bc7a0b2c46d schema:affiliation https://www.grid.ac/institutes/grid.265025.6
58 schema:familyName Huang
59 schema:givenName Xujian
60 rdf:type schema:Person
61 N68fa77c18689438c824b0da1755bd202 schema:name doi
62 schema:value 10.1007/s00010-019-00637-w
63 rdf:type schema:PropertyValue
64 N75533ee360964edea60212dc3f3ec19b rdf:first N3193f713c5bd4666a5550bc7a0b2c46d
65 rdf:rest Naea7d84dd8c3499d90a1bc349ebfd8da
66 Naea7d84dd8c3499d90a1bc349ebfd8da rdf:first Ndb60769c3e7743fa8714df1c424cae5b
67 rdf:rest rdf:nil
68 Nbb8e2ebb4ac343d5a6262e6393369d1e schema:name readcube_id
69 schema:value 3cbeee38af5e5bd003ca607b8de48401deb7b30d56c71626a548ca393ac5a7d1
70 rdf:type schema:PropertyValue
71 Nd094e5282f6e4119b15b26938fe897e8 schema:name dimensions_id
72 schema:value pub.1112540490
73 rdf:type schema:PropertyValue
74 Ndb60769c3e7743fa8714df1c424cae5b schema:affiliation https://www.grid.ac/institutes/grid.265025.6
75 schema:familyName Tan
76 schema:givenName Dongni
77 rdf:type schema:Person
78 Ndc33871d3ffa4de5af8b8b508a166f5f schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
81 schema:name Mathematical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
84 schema:name Pure Mathematics
85 rdf:type schema:DefinedTerm
86 sg:journal.1136868 schema:issn 0001-9054
87 1420-8903
88 schema:name Aequationes mathematicae
89 rdf:type schema:Periodical
90 sg:pub.10.1007/978-3-663-02555-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046362779
91 https://doi.org/10.1007/978-3-663-02555-9
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf00147942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022065252
94 https://doi.org/10.1007/bf00147942
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf01818323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006286658
97 https://doi.org/10.1007/bf01818323
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s00010-017-0478-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084517162
100 https://doi.org/10.1007/s00010-017-0478-7
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s00010-018-0539-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101320758
103 https://doi.org/10.1007/s00010-018-0539-6
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s002200050799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053110757
106 https://doi.org/10.1007/s002200050799
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s11425-009-0156-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029497480
109 https://doi.org/10.1007/s11425-009-0156-x
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s11425-017-9188-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106542614
112 https://doi.org/10.1007/s11425-017-9188-6
113 rdf:type schema:CreativeWork
114 sg:pub.10.1023/a:1014933313332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000056646
115 https://doi.org/10.1023/a:1014933313332
116 rdf:type schema:CreativeWork
117 https://app.dimensions.ai/details/publication/pub.1109411041 schema:CreativeWork
118 https://doi.org/10.1002/mana.19640280102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039179696
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/mana.19690400114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036903193
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/mana.19891400121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025607145
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/mana.19891430119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050526071
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1006/jfan.2002.3970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053020385
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.aim.2018.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106706201
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.jmaa.2006.04.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020090471
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.jmaa.2012.06.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034839630
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jmaa.2013.03.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044012547
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jmaa.2017.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085915635
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.jmaa.2018.05.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104262333
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.jmaa.2018.06.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105070207
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.laa.2017.04.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085074032
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.na.2004.07.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028999191
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.na.2008.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010223718
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.na.2009.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049216140
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.physleta.2013.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043229613
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0034-4877(04)80012-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008994058
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1201/9781420010206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109411041
155 rdf:type schema:CreativeWork
156 https://doi.org/10.14232/actasm-018-255-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105368765
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1515/dema-1977-0115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100304398
159 rdf:type schema:CreativeWork
160 https://doi.org/10.4064/sm219-2-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072185408
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.265025.6 schema:alternateName Tianjin University of Technology
163 schema:name Department of Mathematics, Tianjin University of Technology, 300384, Tianjin, China
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...