On Fermat Diophantine functional equations, little Picard theorem and beyond View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Wei Chen, Qi Han, Jingbo Liu

ABSTRACT

We discuss equivalence conditions for the non-existence of non-trivial meromorphic solutions to the Fermat Diophantine equation fm(z)+gn(z)=1 with integers m,n≥2, from which other approaches to proving the little Picard theorem are discussed.

PAGES

425-432

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00010-018-0614-z

DOI

http://dx.doi.org/10.1007/s00010-018-0614-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109991732


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chongqing University of Posts and Telecommunications", 
          "id": "https://www.grid.ac/institutes/grid.411587.e", 
          "name": [
            "School of Science, Chongqing University of Posts and Telecommunications, 400065, Chongqing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Wei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas A&M University", 
          "id": "https://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Department of Science and Mathematics, Texas A&M University at San Antonio, 78224, San Antonio, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Qi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas A&M University", 
          "id": "https://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Department of Science and Mathematics, Texas A&M University at San Antonio, 78224, San Antonio, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jingbo", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03323097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000499425", 
          "https://doi.org/10.1007/bf03323097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00010-012-0154-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001073322", 
          "https://doi.org/10.1007/s00010-012-0154-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1966-0197732-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007127804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-08-09393-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007839291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9904-1966-11429-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012911860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00013-007-2371-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015136980", 
          "https://doi.org/10.1007/s00013-007-2371-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/jlms/s1-40.1.166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015385127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9904-1968-11975-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022811060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2005.08.189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025672757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0024609304003418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029797672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00209-007-0196-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036219761", 
          "https://doi.org/10.1007/s00209-007-0196-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1036639051", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-85590-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036639051", 
          "https://doi.org/10.1007/978-3-642-85590-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-85590-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036639051", 
          "https://doi.org/10.1007/978-3-642-85590-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0024609301008712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042852412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0024609301008712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042852412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02559545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045966712", 
          "https://doi.org/10.1007/bf02559545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01095627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049561009", 
          "https://doi.org/10.1007/bf01095627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01095627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049561009", 
          "https://doi.org/10.1007/bf01095627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129167x14500025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062902850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2748/tmj/1178242646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070921568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2996/kmj/1175287622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070964344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cmb-2017-010-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083998755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2017.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099628379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00029890.1969.12000393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103445926"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "We discuss equivalence conditions for the non-existence of non-trivial meromorphic solutions to the Fermat Diophantine equation fm(z)+gn(z)=1 with integers m,n\u22652, from which other approaches to proving the little Picard theorem are discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00010-018-0614-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136868", 
        "issn": [
          "0001-9054", 
          "1420-8903"
        ], 
        "name": "Aequationes mathematicae", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "93"
      }
    ], 
    "name": "On Fermat Diophantine functional equations, little Picard theorem and beyond", 
    "pagination": "425-432", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0ad9d737c66141b68393a29aaf6907d441bdf30e3bcbbaa6beb4b8aeb61d622b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00010-018-0614-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109991732"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00010-018-0614-z", 
      "https://app.dimensions.ai/details/publication/pub.1109991732"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72835_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00010-018-0614-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00010-018-0614-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00010-018-0614-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00010-018-0614-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00010-018-0614-z'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      20 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00010-018-0614-z schema:author N5b4d5c4ba47847deba781336037cab8c
2 schema:citation sg:pub.10.1007/978-3-642-85590-0
3 sg:pub.10.1007/bf01095627
4 sg:pub.10.1007/bf02559545
5 sg:pub.10.1007/bf03323097
6 sg:pub.10.1007/s00010-012-0154-x
7 sg:pub.10.1007/s00013-007-2371-4
8 sg:pub.10.1007/s00209-007-0196-2
9 https://app.dimensions.ai/details/publication/pub.1036639051
10 https://doi.org/10.1016/j.chaos.2005.08.189
11 https://doi.org/10.1016/j.jmaa.2017.12.010
12 https://doi.org/10.1080/00029890.1969.12000393
13 https://doi.org/10.1090/s0002-9904-1966-11429-5
14 https://doi.org/10.1090/s0002-9904-1968-11975-5
15 https://doi.org/10.1090/s0002-9939-08-09393-3
16 https://doi.org/10.1090/s0002-9939-1966-0197732-x
17 https://doi.org/10.1112/jlms/s1-40.1.166
18 https://doi.org/10.1112/s0024609301008712
19 https://doi.org/10.1112/s0024609304003418
20 https://doi.org/10.1142/s0129167x14500025
21 https://doi.org/10.2748/tmj/1178242646
22 https://doi.org/10.2996/kmj/1175287622
23 https://doi.org/10.4153/cmb-2017-010-x
24 schema:datePublished 2019-04
25 schema:datePublishedReg 2019-04-01
26 schema:description We discuss equivalence conditions for the non-existence of non-trivial meromorphic solutions to the Fermat Diophantine equation fm(z)+gn(z)=1 with integers m,n≥2, from which other approaches to proving the little Picard theorem are discussed.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N20119f8a49a74a8ab03ada4cbac972a0
31 N56b1a96b7bb74c9c91343b19db6a7fc0
32 sg:journal.1136868
33 schema:name On Fermat Diophantine functional equations, little Picard theorem and beyond
34 schema:pagination 425-432
35 schema:productId N10869f0c71d54497a916a48aadf57ad1
36 Nb86f233dfa7a41e6bbf53b78fab0e2ba
37 Nbb8c75a6a0834a359b87a6e67abc0e38
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109991732
39 https://doi.org/10.1007/s00010-018-0614-z
40 schema:sdDatePublished 2019-04-11T12:52
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N0f31f59e62e2477c9f0153e47a3da73f
43 schema:url https://link.springer.com/10.1007%2Fs00010-018-0614-z
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N0965fcbb06284aebb8559a4ba696df6d rdf:first N3ebe8ca89220428984700bfadf66b1d9
48 rdf:rest N40d1b29426484df8af84fddfa8d5fb24
49 N0f31f59e62e2477c9f0153e47a3da73f schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N10869f0c71d54497a916a48aadf57ad1 schema:name readcube_id
52 schema:value 0ad9d737c66141b68393a29aaf6907d441bdf30e3bcbbaa6beb4b8aeb61d622b
53 rdf:type schema:PropertyValue
54 N1fc07182aa0a4e4a8bbc28b14eed4122 schema:affiliation https://www.grid.ac/institutes/grid.411587.e
55 schema:familyName Chen
56 schema:givenName Wei
57 rdf:type schema:Person
58 N20119f8a49a74a8ab03ada4cbac972a0 schema:volumeNumber 93
59 rdf:type schema:PublicationVolume
60 N3ebe8ca89220428984700bfadf66b1d9 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
61 schema:familyName Han
62 schema:givenName Qi
63 rdf:type schema:Person
64 N40d1b29426484df8af84fddfa8d5fb24 rdf:first Nc92c7e49fc384719b6e6c8dff0be16a1
65 rdf:rest rdf:nil
66 N56b1a96b7bb74c9c91343b19db6a7fc0 schema:issueNumber 2
67 rdf:type schema:PublicationIssue
68 N5b4d5c4ba47847deba781336037cab8c rdf:first N1fc07182aa0a4e4a8bbc28b14eed4122
69 rdf:rest N0965fcbb06284aebb8559a4ba696df6d
70 Nb86f233dfa7a41e6bbf53b78fab0e2ba schema:name doi
71 schema:value 10.1007/s00010-018-0614-z
72 rdf:type schema:PropertyValue
73 Nbb8c75a6a0834a359b87a6e67abc0e38 schema:name dimensions_id
74 schema:value pub.1109991732
75 rdf:type schema:PropertyValue
76 Nc92c7e49fc384719b6e6c8dff0be16a1 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
77 schema:familyName Liu
78 schema:givenName Jingbo
79 rdf:type schema:Person
80 sg:journal.1136868 schema:issn 0001-9054
81 1420-8903
82 schema:name Aequationes mathematicae
83 rdf:type schema:Periodical
84 sg:pub.10.1007/978-3-642-85590-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036639051
85 https://doi.org/10.1007/978-3-642-85590-0
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf01095627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049561009
88 https://doi.org/10.1007/bf01095627
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf02559545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045966712
91 https://doi.org/10.1007/bf02559545
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf03323097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000499425
94 https://doi.org/10.1007/bf03323097
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s00010-012-0154-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001073322
97 https://doi.org/10.1007/s00010-012-0154-x
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s00013-007-2371-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015136980
100 https://doi.org/10.1007/s00013-007-2371-4
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s00209-007-0196-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036219761
103 https://doi.org/10.1007/s00209-007-0196-2
104 rdf:type schema:CreativeWork
105 https://app.dimensions.ai/details/publication/pub.1036639051 schema:CreativeWork
106 https://doi.org/10.1016/j.chaos.2005.08.189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025672757
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.jmaa.2017.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099628379
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1080/00029890.1969.12000393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103445926
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1090/s0002-9904-1966-11429-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012911860
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1090/s0002-9904-1968-11975-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022811060
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1090/s0002-9939-08-09393-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007839291
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1090/s0002-9939-1966-0197732-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007127804
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1112/jlms/s1-40.1.166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015385127
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1112/s0024609301008712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042852412
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1112/s0024609304003418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029797672
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1142/s0129167x14500025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062902850
127 rdf:type schema:CreativeWork
128 https://doi.org/10.2748/tmj/1178242646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070921568
129 rdf:type schema:CreativeWork
130 https://doi.org/10.2996/kmj/1175287622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070964344
131 rdf:type schema:CreativeWork
132 https://doi.org/10.4153/cmb-2017-010-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1083998755
133 rdf:type schema:CreativeWork
134 https://www.grid.ac/institutes/grid.264756.4 schema:alternateName Texas A&M University
135 schema:name Department of Science and Mathematics, Texas A&M University at San Antonio, 78224, San Antonio, Texas, USA
136 rdf:type schema:Organization
137 https://www.grid.ac/institutes/grid.411587.e schema:alternateName Chongqing University of Posts and Telecommunications
138 schema:name School of Science, Chongqing University of Posts and Telecommunications, 400065, Chongqing, People’s Republic of China
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...