Quadratic functions fulfilling an additional condition along hyperbolas or the unit circle View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Edit Garda-Mátyás

ABSTRACT

Let S1 denote the set of all pairs (x, y) of real numbers that fulfill the condition x2-y2=1, and S2 denote the set of all pairs (x, y) of real numbers that fulfill the condition x2+y2=1. In this paper we consider quadratic real functions f that satisfy the additional equation y2f(x)=x2f(y) under the condition (x,y)∈Si(i=1,2). We prove that each of these conditions implies f(x)=f(1)x2 for all x∈R. More... »

PAGES

451-465

Journal

TITLE

Aequationes mathematicae

ISSUE

2

VOLUME

93

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00010-018-0591-2

DOI

http://dx.doi.org/10.1007/s00010-018-0591-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106893673


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Economic Sciences, Sapientia University, Pia\u0163a Libert\u0103\u0163ii nr. 1, 530104, Miercurea-Ciuc, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garda-M\u00e1ty\u00e1s", 
        "givenName": "Edit", 
        "id": "sg:person.015255106400.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255106400.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01817553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005839660", 
          "https://doi.org/10.1007/bf01817553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01817553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005839660", 
          "https://doi.org/10.1007/bf01817553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1965-0179496-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011668266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00010-005-2810-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015282461", 
          "https://doi.org/10.1007/s00010-005-2810-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01589228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018679246", 
          "https://doi.org/10.1007/bf01589228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00010-014-0258-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022135783", 
          "https://doi.org/10.1007/s00010-014-0258-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00010-014-0258-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022135783", 
          "https://doi.org/10.1007/s00010-014-0258-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1038450707", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7643-8749-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038450707", 
          "https://doi.org/10.1007/978-3-7643-8749-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7643-8749-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038450707", 
          "https://doi.org/10.1007/978-3-7643-8749-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5486/pmd.2016.7637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072917759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00010-017-0521-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093029395", 
          "https://doi.org/10.1007/s00010-017-0521-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139086578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098692263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10474-018-0795-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101175930", 
          "https://doi.org/10.1007/s10474-018-0795-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10474-018-0795-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101175930", 
          "https://doi.org/10.1007/s10474-018-0795-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10474-018-0795-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101175930", 
          "https://doi.org/10.1007/s10474-018-0795-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Let S1 denote the set of all pairs (x, y) of real numbers that fulfill the condition x2-y2=1, and S2 denote the set of all pairs (x, y) of real numbers that fulfill the condition x2+y2=1. In this paper we consider quadratic real functions f that satisfy the additional equation y2f(x)=x2f(y) under the condition (x,y)\u2208Si(i=1,2). We prove that each of these conditions implies f(x)=f(1)x2 for all x\u2208R.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00010-018-0591-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136868", 
        "issn": [
          "0001-9054", 
          "1420-8903"
        ], 
        "name": "Aequationes mathematicae", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "93"
      }
    ], 
    "name": "Quadratic functions fulfilling an additional condition along hyperbolas or the unit circle", 
    "pagination": "451-465", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2dd8148b9ffa8263f584a7a816f2e6009f9291ce051ed53b2ffe0f2aaecd231d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00010-018-0591-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106893673"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00010-018-0591-2", 
      "https://app.dimensions.ai/details/publication/pub.1106893673"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72867_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00010-018-0591-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00010-018-0591-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00010-018-0591-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00010-018-0591-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00010-018-0591-2'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00010-018-0591-2 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N27386bab98fd4db0b7fb078199ed82ed
4 schema:citation sg:pub.10.1007/978-3-7643-8749-5
5 sg:pub.10.1007/bf01589228
6 sg:pub.10.1007/bf01817553
7 sg:pub.10.1007/s00010-005-2810-x
8 sg:pub.10.1007/s00010-014-0258-6
9 sg:pub.10.1007/s00010-017-0521-8
10 sg:pub.10.1007/s10474-018-0795-x
11 https://app.dimensions.ai/details/publication/pub.1038450707
12 https://doi.org/10.1017/cbo9781139086578
13 https://doi.org/10.1090/s0002-9939-1965-0179496-8
14 https://doi.org/10.5486/pmd.2016.7637
15 schema:datePublished 2019-04
16 schema:datePublishedReg 2019-04-01
17 schema:description Let S1 denote the set of all pairs (x, y) of real numbers that fulfill the condition x2-y2=1, and S2 denote the set of all pairs (x, y) of real numbers that fulfill the condition x2+y2=1. In this paper we consider quadratic real functions f that satisfy the additional equation y2f(x)=x2f(y) under the condition (x,y)∈Si(i=1,2). We prove that each of these conditions implies f(x)=f(1)x2 for all x∈R.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Ndfeae8c509ac4ddb92b1cc84f6977bde
22 Ne3db1dd93e11464eadd3182e255f1ca1
23 sg:journal.1136868
24 schema:name Quadratic functions fulfilling an additional condition along hyperbolas or the unit circle
25 schema:pagination 451-465
26 schema:productId N4a76a9a6d5ae4b139707f3e8c16c6c54
27 Naffbc81f7ac04b5d9a9d1abc7b6bd6ec
28 Nc6cd728a89164e28a2a534d2378cf439
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106893673
30 https://doi.org/10.1007/s00010-018-0591-2
31 schema:sdDatePublished 2019-04-11T12:54
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N46b574409168444a85a615b6fc31a088
34 schema:url https://link.springer.com/10.1007%2Fs00010-018-0591-2
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N0d42c52382b44d4fa29d1fd97d9b7b4e schema:name Department of Economic Sciences, Sapientia University, Piaţa Libertăţii nr. 1, 530104, Miercurea-Ciuc, Romania
39 rdf:type schema:Organization
40 N27386bab98fd4db0b7fb078199ed82ed rdf:first sg:person.015255106400.86
41 rdf:rest rdf:nil
42 N46b574409168444a85a615b6fc31a088 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N4a76a9a6d5ae4b139707f3e8c16c6c54 schema:name dimensions_id
45 schema:value pub.1106893673
46 rdf:type schema:PropertyValue
47 Naffbc81f7ac04b5d9a9d1abc7b6bd6ec schema:name doi
48 schema:value 10.1007/s00010-018-0591-2
49 rdf:type schema:PropertyValue
50 Nc6cd728a89164e28a2a534d2378cf439 schema:name readcube_id
51 schema:value 2dd8148b9ffa8263f584a7a816f2e6009f9291ce051ed53b2ffe0f2aaecd231d
52 rdf:type schema:PropertyValue
53 Ndfeae8c509ac4ddb92b1cc84f6977bde schema:volumeNumber 93
54 rdf:type schema:PublicationVolume
55 Ne3db1dd93e11464eadd3182e255f1ca1 schema:issueNumber 2
56 rdf:type schema:PublicationIssue
57 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
58 schema:name Engineering
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
61 schema:name Materials Engineering
62 rdf:type schema:DefinedTerm
63 sg:journal.1136868 schema:issn 0001-9054
64 1420-8903
65 schema:name Aequationes mathematicae
66 rdf:type schema:Periodical
67 sg:person.015255106400.86 schema:affiliation N0d42c52382b44d4fa29d1fd97d9b7b4e
68 schema:familyName Garda-Mátyás
69 schema:givenName Edit
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255106400.86
71 rdf:type schema:Person
72 sg:pub.10.1007/978-3-7643-8749-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038450707
73 https://doi.org/10.1007/978-3-7643-8749-5
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf01589228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018679246
76 https://doi.org/10.1007/bf01589228
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf01817553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005839660
79 https://doi.org/10.1007/bf01817553
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/s00010-005-2810-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015282461
82 https://doi.org/10.1007/s00010-005-2810-x
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/s00010-014-0258-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022135783
85 https://doi.org/10.1007/s00010-014-0258-6
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s00010-017-0521-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093029395
88 https://doi.org/10.1007/s00010-017-0521-8
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s10474-018-0795-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101175930
91 https://doi.org/10.1007/s10474-018-0795-x
92 rdf:type schema:CreativeWork
93 https://app.dimensions.ai/details/publication/pub.1038450707 schema:CreativeWork
94 https://doi.org/10.1017/cbo9781139086578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098692263
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1090/s0002-9939-1965-0179496-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011668266
97 rdf:type schema:CreativeWork
98 https://doi.org/10.5486/pmd.2016.7637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072917759
99 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...