Continued fraction expansions for the Lambert W function View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Cristina B. Corcino, Roberto B. Corcino, István Mező

ABSTRACT

In the first part of the paper we give a new integral representation for the principal branch of the Lambert W function. Then we deduce two continued fraction expansions for this branch. At the end of the paper we study the numerical behavior of the approximants of these expansions.

PAGES

485-498

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00010-018-0559-2

DOI

http://dx.doi.org/10.1007/s00010-018-0559-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103795300


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cebu Normal University", 
          "id": "https://www.grid.ac/institutes/grid.442992.0", 
          "name": [
            "Department of Mathematics, Cebu Normal University, Osmena Blvd., 6000, Cebu City, Philippines"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corcino", 
        "givenName": "Cristina B.", 
        "id": "sg:person.015523527257.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015523527257.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cebu Normal University", 
          "id": "https://www.grid.ac/institutes/grid.442992.0", 
          "name": [
            "Department of Mathematics, Cebu Normal University, Osmena Blvd., 6000, Cebu City, Philippines"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corcino", 
        "givenName": "Roberto B.", 
        "id": "sg:person.014726146657.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014726146657.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Information Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.260478.f", 
          "name": [
            "School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mez\u0151", 
        "givenName": "Istv\u00e1n", 
        "id": "sg:person.010524041715.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010524041715.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01600331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015926869", 
          "https://doi.org/10.1007/bf01600331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01600331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015926869", 
          "https://doi.org/10.1007/bf01600331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/am.2013.46122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017591807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01601216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024717901", 
          "https://doi.org/10.1007/bf01601216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02124750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028784456", 
          "https://doi.org/10.1007/bf02124750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02124750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028784456", 
          "https://doi.org/10.1007/bf02124750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/258726.258783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033409711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01899329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048073311", 
          "https://doi.org/10.1007/bf01899329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01899329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048073311", 
          "https://doi.org/10.1007/bf01899329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2002.801912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061798678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1216/rmj-1974-4-2-213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064427515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10444-017-9530-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084024638", 
          "https://doi.org/10.1007/s10444-017-9530-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10444-017-9530-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084024638", 
          "https://doi.org/10.1007/s10444-017-9530-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2017.05.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085936563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10652469.2017.1376195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091790642"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In the first part of the paper we give a new integral representation for the principal branch of the Lambert W function. Then we deduce two continued fraction expansions for this branch. At the end of the paper we study the numerical behavior of the approximants of these expansions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00010-018-0559-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136868", 
        "issn": [
          "0001-9054", 
          "1420-8903"
        ], 
        "name": "Aequationes mathematicae", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "93"
      }
    ], 
    "name": "Continued fraction expansions for the Lambert W function", 
    "pagination": "485-498", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e905c8a17f52ed4533f66a2a8596465f60ce0b538d7f48d1ec56f5ea4a522022"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00010-018-0559-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103795300"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00010-018-0559-2", 
      "https://app.dimensions.ai/details/publication/pub.1103795300"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72850_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00010-018-0559-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00010-018-0559-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00010-018-0559-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00010-018-0559-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00010-018-0559-2'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      20 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00010-018-0559-2 schema:author N5f7a8b0c88724356bd3d16fe23ac4174
2 schema:citation sg:pub.10.1007/bf01600331
3 sg:pub.10.1007/bf01601216
4 sg:pub.10.1007/bf01899329
5 sg:pub.10.1007/bf02124750
6 sg:pub.10.1007/s10444-017-9530-3
7 https://doi.org/10.1016/j.jmaa.2017.05.061
8 https://doi.org/10.1080/10652469.2017.1376195
9 https://doi.org/10.1109/tsp.2002.801912
10 https://doi.org/10.1145/258726.258783
11 https://doi.org/10.1216/rmj-1974-4-2-213
12 https://doi.org/10.4236/am.2013.46122
13 schema:datePublished 2019-04
14 schema:datePublishedReg 2019-04-01
15 schema:description In the first part of the paper we give a new integral representation for the principal branch of the Lambert W function. Then we deduce two continued fraction expansions for this branch. At the end of the paper we study the numerical behavior of the approximants of these expansions.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N15c8b6e0af544133ac9823d5014307bc
20 N77b6445e20f6410ea6f1c0d5e832e6cb
21 sg:journal.1136868
22 schema:name Continued fraction expansions for the Lambert W function
23 schema:pagination 485-498
24 schema:productId N1b7727bfa2014ca3bc718c970ce970a8
25 N2fa3b220a6424e3c9cba034544e4bd05
26 N63b25a648e0146828c2e1e18b3b97f67
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103795300
28 https://doi.org/10.1007/s00010-018-0559-2
29 schema:sdDatePublished 2019-04-11T12:53
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N12ac014027ed47ae903f5a08a7fa475a
32 schema:url https://link.springer.com/10.1007%2Fs00010-018-0559-2
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N12ac014027ed47ae903f5a08a7fa475a schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N15c8b6e0af544133ac9823d5014307bc schema:issueNumber 2
39 rdf:type schema:PublicationIssue
40 N1b7727bfa2014ca3bc718c970ce970a8 schema:name doi
41 schema:value 10.1007/s00010-018-0559-2
42 rdf:type schema:PropertyValue
43 N2fa3b220a6424e3c9cba034544e4bd05 schema:name dimensions_id
44 schema:value pub.1103795300
45 rdf:type schema:PropertyValue
46 N496ea77125b24b48a4cda7c990897be0 rdf:first sg:person.010524041715.07
47 rdf:rest rdf:nil
48 N55aba6cfbaac440390d61ab3e69b7643 rdf:first sg:person.014726146657.01
49 rdf:rest N496ea77125b24b48a4cda7c990897be0
50 N5f7a8b0c88724356bd3d16fe23ac4174 rdf:first sg:person.015523527257.32
51 rdf:rest N55aba6cfbaac440390d61ab3e69b7643
52 N63b25a648e0146828c2e1e18b3b97f67 schema:name readcube_id
53 schema:value e905c8a17f52ed4533f66a2a8596465f60ce0b538d7f48d1ec56f5ea4a522022
54 rdf:type schema:PropertyValue
55 N77b6445e20f6410ea6f1c0d5e832e6cb schema:volumeNumber 93
56 rdf:type schema:PublicationVolume
57 sg:journal.1136868 schema:issn 0001-9054
58 1420-8903
59 schema:name Aequationes mathematicae
60 rdf:type schema:Periodical
61 sg:person.010524041715.07 schema:affiliation https://www.grid.ac/institutes/grid.260478.f
62 schema:familyName Mező
63 schema:givenName István
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010524041715.07
65 rdf:type schema:Person
66 sg:person.014726146657.01 schema:affiliation https://www.grid.ac/institutes/grid.442992.0
67 schema:familyName Corcino
68 schema:givenName Roberto B.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014726146657.01
70 rdf:type schema:Person
71 sg:person.015523527257.32 schema:affiliation https://www.grid.ac/institutes/grid.442992.0
72 schema:familyName Corcino
73 schema:givenName Cristina B.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015523527257.32
75 rdf:type schema:Person
76 sg:pub.10.1007/bf01600331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015926869
77 https://doi.org/10.1007/bf01600331
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf01601216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024717901
80 https://doi.org/10.1007/bf01601216
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf01899329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048073311
83 https://doi.org/10.1007/bf01899329
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf02124750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028784456
86 https://doi.org/10.1007/bf02124750
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s10444-017-9530-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084024638
89 https://doi.org/10.1007/s10444-017-9530-3
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.jmaa.2017.05.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085936563
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1080/10652469.2017.1376195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091790642
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/tsp.2002.801912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798678
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1145/258726.258783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033409711
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1216/rmj-1974-4-2-213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064427515
100 rdf:type schema:CreativeWork
101 https://doi.org/10.4236/am.2013.46122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017591807
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.260478.f schema:alternateName Nanjing University of Information Science and Technology
104 schema:name School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, People’s Republic of China
105 rdf:type schema:Organization
106 https://www.grid.ac/institutes/grid.442992.0 schema:alternateName Cebu Normal University
107 schema:name Department of Mathematics, Cebu Normal University, Osmena Blvd., 6000, Cebu City, Philippines
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...