Some extensions of the Levi–Civitá functional equation and richly periodic spaces of functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-03

AUTHORS

Ekaterina Shulman

ABSTRACT

We study some classes of functional equations using geometric results on orbits for infinite-dimensional continuous representations of groups. One of the typical results is the following. Let G be a connected topological group. Suppose that continuous functions ai, bi, ui, vi on G satisfy the condition If the functions a1, ... , am are linearly independent then all bi are matrix elements of a continuous finite-dimensional representation of G. For this means that bi are quasipolynomials. More... »

PAGES

109-120

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00010-010-0041-2

DOI

http://dx.doi.org/10.1007/s00010-010-0041-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044025812


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vologda State Pedagogical University", 
          "id": "https://www.grid.ac/institutes/grid.445062.1", 
          "name": [
            "Vologda State Pedagogical University, Vologda, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shulman", 
        "givenName": "Ekaterina", 
        "id": "sg:person.016216433637.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016216433637.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01830666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016827738", 
          "https://doi.org/10.1007/bf01830666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01830666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016827738", 
          "https://doi.org/10.1007/bf01830666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00010-010-0005-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017350321", 
          "https://doi.org/10.1007/s00010-010-0005-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00010-010-0005-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017350321", 
          "https://doi.org/10.1007/s00010-010-0005-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/jlms/54.1.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024723286"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-03", 
    "datePublishedReg": "2011-03-01", 
    "description": "We study some classes of functional equations using geometric results on orbits for infinite-dimensional continuous representations of groups. One of the typical results is the following. Let G be a connected topological group. Suppose that continuous functions ai, bi, ui, vi on G satisfy the condition If the functions a1, ... , am are linearly independent then all bi are matrix elements of a continuous finite-dimensional representation of G. For this means that bi are quasipolynomials.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00010-010-0041-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136868", 
        "issn": [
          "0001-9054", 
          "1420-8903"
        ], 
        "name": "Aequationes mathematicae", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "81"
      }
    ], 
    "name": "Some extensions of the Levi\u2013Civit\u00e1 functional equation and richly periodic spaces of functions", 
    "pagination": "109-120", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d1b5a8d5c2a1d09d7608b77ee5a76b287b3c5a7d82e1412908a7cdb39db33944"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00010-010-0041-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044025812"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00010-010-0041-2", 
      "https://app.dimensions.ai/details/publication/pub.1044025812"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00010-010-0041-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00010-010-0041-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00010-010-0041-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00010-010-0041-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00010-010-0041-2'


 

This table displays all metadata directly associated to this object as RDF triples.

72 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00010-010-0041-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N392a55c6208f42e4a771d5962dffc92a
4 schema:citation sg:pub.10.1007/bf01830666
5 sg:pub.10.1007/s00010-010-0005-6
6 https://doi.org/10.1112/jlms/54.1.111
7 schema:datePublished 2011-03
8 schema:datePublishedReg 2011-03-01
9 schema:description We study some classes of functional equations using geometric results on orbits for infinite-dimensional continuous representations of groups. One of the typical results is the following. Let G be a connected topological group. Suppose that continuous functions ai, bi, ui, vi on G satisfy the condition If the functions a1, ... , am are linearly independent then all bi are matrix elements of a continuous finite-dimensional representation of G. For this means that bi are quasipolynomials.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N12d3089784134d5cb2374bf7f1b5f67c
14 Ncd309bcd17214a3eaf40d4ce2e0f5c27
15 sg:journal.1136868
16 schema:name Some extensions of the Levi–Civitá functional equation and richly periodic spaces of functions
17 schema:pagination 109-120
18 schema:productId N2c32466083f141da84b67f58594555e5
19 N87b9a3806cc54c16b65552ef6f686911
20 Nb4e301e741cd4bc1a1f86ea56864ad25
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044025812
22 https://doi.org/10.1007/s00010-010-0041-2
23 schema:sdDatePublished 2019-04-10T17:24
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher Na2e4e28eb25848cdbcac3a721145f700
26 schema:url http://link.springer.com/10.1007/s00010-010-0041-2
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N12d3089784134d5cb2374bf7f1b5f67c schema:volumeNumber 81
31 rdf:type schema:PublicationVolume
32 N2c32466083f141da84b67f58594555e5 schema:name dimensions_id
33 schema:value pub.1044025812
34 rdf:type schema:PropertyValue
35 N392a55c6208f42e4a771d5962dffc92a rdf:first sg:person.016216433637.36
36 rdf:rest rdf:nil
37 N87b9a3806cc54c16b65552ef6f686911 schema:name doi
38 schema:value 10.1007/s00010-010-0041-2
39 rdf:type schema:PropertyValue
40 Na2e4e28eb25848cdbcac3a721145f700 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 Nb4e301e741cd4bc1a1f86ea56864ad25 schema:name readcube_id
43 schema:value d1b5a8d5c2a1d09d7608b77ee5a76b287b3c5a7d82e1412908a7cdb39db33944
44 rdf:type schema:PropertyValue
45 Ncd309bcd17214a3eaf40d4ce2e0f5c27 schema:issueNumber 1-2
46 rdf:type schema:PublicationIssue
47 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
48 schema:name Mathematical Sciences
49 rdf:type schema:DefinedTerm
50 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
51 schema:name Pure Mathematics
52 rdf:type schema:DefinedTerm
53 sg:journal.1136868 schema:issn 0001-9054
54 1420-8903
55 schema:name Aequationes mathematicae
56 rdf:type schema:Periodical
57 sg:person.016216433637.36 schema:affiliation https://www.grid.ac/institutes/grid.445062.1
58 schema:familyName Shulman
59 schema:givenName Ekaterina
60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016216433637.36
61 rdf:type schema:Person
62 sg:pub.10.1007/bf01830666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016827738
63 https://doi.org/10.1007/bf01830666
64 rdf:type schema:CreativeWork
65 sg:pub.10.1007/s00010-010-0005-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017350321
66 https://doi.org/10.1007/s00010-010-0005-6
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1112/jlms/54.1.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024723286
69 rdf:type schema:CreativeWork
70 https://www.grid.ac/institutes/grid.445062.1 schema:alternateName Vologda State Pedagogical University
71 schema:name Vologda State Pedagogical University, Vologda, Russia
72 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...