On Nonlinear Fractional Integro–Differential Equations with Positive Constant Coefficient View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Shivaji Tate, V. V. Kharat, H. T. Dinde

ABSTRACT

The aim of this study is to investigate the existence and other properties of solution of nonlinear fractional integro–differential equations with constant coefficient. Also with the help of Pachpatte’s inequality, we prove the continuous dependence of the solutions.

PAGES

41

References to SciGraph publications

Journal

TITLE

Mediterranean Journal of Mathematics

ISSUE

2

VOLUME

16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00009-019-1325-y

DOI

http://dx.doi.org/10.1007/s00009-019-1325-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112472643


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Mathematics, Kisan Veer Mahavidyalaya, 412803, Wai, Maharashtra, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tate", 
        "givenName": "Shivaji", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mathematics, N. B. Navale Sinhgad College of Engg., Kegaon, 413255, Solapur, Maharashtra, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kharat", 
        "givenName": "V. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mathematics, Karmaveer Bhaurao Patil College, 415409, Urun-Islampur, Maharashtra, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dinde", 
        "givenName": "H. T.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1001065131", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1001065131", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nonrwa.2010.05.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002058767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/jaa-2012-0014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003884865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.na.2008.02.087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008029014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00036811.2014.905679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008063456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-3293-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010959533", 
          "https://doi.org/10.1007/978-90-481-3293-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-3293-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010959533", 
          "https://doi.org/10.1007/978-90-481-3293-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-0703-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011523327", 
          "https://doi.org/10.1007/978-1-4614-0703-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-0703-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011523327", 
          "https://doi.org/10.1007/978-1-4614-0703-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/math3020398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018076472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.na.2009.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019640599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14574-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022895029", 
          "https://doi.org/10.1007/978-3-642-14574-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14574-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022895029", 
          "https://doi.org/10.1007/978-3-642-14574-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2013-01961-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025000469", 
          "https://doi.org/10.1140/epjst/e2013-01961-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14003-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027120290", 
          "https://doi.org/10.1007/978-3-642-14003-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14003-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027120290", 
          "https://doi.org/10.1007/978-3-642-14003-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00009-015-0523-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032392723", 
          "https://doi.org/10.1007/s00009-015-0523-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2006.10.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034576115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2478/s13540-013-0059-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038734521", 
          "https://doi.org/10.2478/s13540-013-0059-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmaa.2000.7194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044075268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-010-1767-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047005400", 
          "https://doi.org/10.1007/s00020-010-1767-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2478/s13540-013-0004-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050765466", 
          "https://doi.org/10.2478/s13540-013-0004-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12988/nade.2013.13014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064858450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7494/opmath.2011.31.3.341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073758481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00009-017-0886-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084017932", 
          "https://doi.org/10.1007/s00009-017-0886-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00009-017-0886-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084017932", 
          "https://doi.org/10.1007/s00009-017-0886-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/8180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098951292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1099011931", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00009-018-1142-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103676088", 
          "https://doi.org/10.1007/s00009-018-1142-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00009-018-1142-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103676088", 
          "https://doi.org/10.1007/s00009-018-1142-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.26637/mjm0603/0005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106497655"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "The aim of this study is to investigate the existence and other properties of solution of nonlinear fractional integro\u2013differential equations with constant coefficient. Also with the help of Pachpatte\u2019s inequality, we prove the continuous dependence of the solutions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00009-019-1325-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135886", 
        "issn": [
          "1660-5446", 
          "1660-5454"
        ], 
        "name": "Mediterranean Journal of Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "On Nonlinear Fractional Integro\u2013Differential Equations with Positive Constant Coefficient", 
    "pagination": "41", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00009-019-1325-y"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a98e30884ac6dc0b4c25cf01c7cec199555c79dfd9b55abb54455d4b25a18d73"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112472643"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00009-019-1325-y", 
      "https://app.dimensions.ai/details/publication/pub.1112472643"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56182_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00009-019-1325-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00009-019-1325-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00009-019-1325-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00009-019-1325-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00009-019-1325-y'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      20 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00009-019-1325-y schema:author N9b87061a374f46ec9e0138fd33d1abc0
2 schema:citation sg:pub.10.1007/978-1-4614-0703-4
3 sg:pub.10.1007/978-3-642-14003-7
4 sg:pub.10.1007/978-3-642-14574-2
5 sg:pub.10.1007/978-90-481-3293-5
6 sg:pub.10.1007/s00009-015-0523-5
7 sg:pub.10.1007/s00009-017-0886-x
8 sg:pub.10.1007/s00009-018-1142-8
9 sg:pub.10.1007/s00020-010-1767-x
10 sg:pub.10.1140/epjst/e2013-01961-5
11 sg:pub.10.2478/s13540-013-0004-0
12 sg:pub.10.2478/s13540-013-0059-y
13 https://app.dimensions.ai/details/publication/pub.1001065131
14 https://app.dimensions.ai/details/publication/pub.1099011931
15 https://doi.org/10.1006/jmaa.2000.7194
16 https://doi.org/10.1016/j.jmaa.2006.10.027
17 https://doi.org/10.1016/j.na.2008.02.087
18 https://doi.org/10.1016/j.na.2009.03.005
19 https://doi.org/10.1016/j.nonrwa.2010.05.029
20 https://doi.org/10.1080/00036811.2014.905679
21 https://doi.org/10.1142/8180
22 https://doi.org/10.12988/nade.2013.13014
23 https://doi.org/10.1515/jaa-2012-0014
24 https://doi.org/10.26637/mjm0603/0005
25 https://doi.org/10.3390/math3020398
26 https://doi.org/10.7494/opmath.2011.31.3.341
27 schema:datePublished 2019-04
28 schema:datePublishedReg 2019-04-01
29 schema:description The aim of this study is to investigate the existence and other properties of solution of nonlinear fractional integro–differential equations with constant coefficient. Also with the help of Pachpatte’s inequality, we prove the continuous dependence of the solutions.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N6ed0c86ce2614d3a84517e75b056a18e
34 Nbd85b68cdca84adeafcf6bb1b03ee522
35 sg:journal.1135886
36 schema:name On Nonlinear Fractional Integro–Differential Equations with Positive Constant Coefficient
37 schema:pagination 41
38 schema:productId N2347f950e3ba41149d3aa2235134a675
39 N3e41f9e07c6647b2b918d4b99cb81c8f
40 Nbb77c9f0a85d4c05b750c746f6c3dc87
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112472643
42 https://doi.org/10.1007/s00009-019-1325-y
43 schema:sdDatePublished 2019-04-15T09:22
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N1a43375ffa1b485aae3d8510733b11ea
46 schema:url https://link.springer.com/10.1007%2Fs00009-019-1325-y
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N15f72f336ade42e9b8f4bf87b857c2f4 rdf:first Nb21b0d737cdb46b1a94c2b07f699ba87
51 rdf:rest N56547ef79e034db8b32d6bb16844a1dd
52 N1a43375ffa1b485aae3d8510733b11ea schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N2347f950e3ba41149d3aa2235134a675 schema:name dimensions_id
55 schema:value pub.1112472643
56 rdf:type schema:PropertyValue
57 N26fd35e133f443fabae62f7f27cb6b19 schema:affiliation Nfcf9b04de6a04141aadd020bdcb18b7b
58 schema:familyName Tate
59 schema:givenName Shivaji
60 rdf:type schema:Person
61 N2746ba069d3e48b2bfecaca5a380b421 schema:name Department of Mathematics, Karmaveer Bhaurao Patil College, 415409, Urun-Islampur, Maharashtra, India
62 rdf:type schema:Organization
63 N3e41f9e07c6647b2b918d4b99cb81c8f schema:name doi
64 schema:value 10.1007/s00009-019-1325-y
65 rdf:type schema:PropertyValue
66 N56547ef79e034db8b32d6bb16844a1dd rdf:first Ndfc529e33bd2435f9077e400c134da22
67 rdf:rest rdf:nil
68 N6ed0c86ce2614d3a84517e75b056a18e schema:volumeNumber 16
69 rdf:type schema:PublicationVolume
70 N9b87061a374f46ec9e0138fd33d1abc0 rdf:first N26fd35e133f443fabae62f7f27cb6b19
71 rdf:rest N15f72f336ade42e9b8f4bf87b857c2f4
72 Nb21b0d737cdb46b1a94c2b07f699ba87 schema:affiliation Ne754ec3422834eb8b580e2880141cc8c
73 schema:familyName Kharat
74 schema:givenName V. V.
75 rdf:type schema:Person
76 Nbb77c9f0a85d4c05b750c746f6c3dc87 schema:name readcube_id
77 schema:value a98e30884ac6dc0b4c25cf01c7cec199555c79dfd9b55abb54455d4b25a18d73
78 rdf:type schema:PropertyValue
79 Nbd85b68cdca84adeafcf6bb1b03ee522 schema:issueNumber 2
80 rdf:type schema:PublicationIssue
81 Ndfc529e33bd2435f9077e400c134da22 schema:affiliation N2746ba069d3e48b2bfecaca5a380b421
82 schema:familyName Dinde
83 schema:givenName H. T.
84 rdf:type schema:Person
85 Ne754ec3422834eb8b580e2880141cc8c schema:name Department of Mathematics, N. B. Navale Sinhgad College of Engg., Kegaon, 413255, Solapur, Maharashtra, India
86 rdf:type schema:Organization
87 Nfcf9b04de6a04141aadd020bdcb18b7b schema:name Department of Mathematics, Kisan Veer Mahavidyalaya, 412803, Wai, Maharashtra, India
88 rdf:type schema:Organization
89 sg:journal.1135886 schema:issn 1660-5446
90 1660-5454
91 schema:name Mediterranean Journal of Mathematics
92 rdf:type schema:Periodical
93 sg:pub.10.1007/978-1-4614-0703-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011523327
94 https://doi.org/10.1007/978-1-4614-0703-4
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/978-3-642-14003-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027120290
97 https://doi.org/10.1007/978-3-642-14003-7
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/978-3-642-14574-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022895029
100 https://doi.org/10.1007/978-3-642-14574-2
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/978-90-481-3293-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010959533
103 https://doi.org/10.1007/978-90-481-3293-5
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00009-015-0523-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032392723
106 https://doi.org/10.1007/s00009-015-0523-5
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00009-017-0886-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1084017932
109 https://doi.org/10.1007/s00009-017-0886-x
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00009-018-1142-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103676088
112 https://doi.org/10.1007/s00009-018-1142-8
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00020-010-1767-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047005400
115 https://doi.org/10.1007/s00020-010-1767-x
116 rdf:type schema:CreativeWork
117 sg:pub.10.1140/epjst/e2013-01961-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025000469
118 https://doi.org/10.1140/epjst/e2013-01961-5
119 rdf:type schema:CreativeWork
120 sg:pub.10.2478/s13540-013-0004-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050765466
121 https://doi.org/10.2478/s13540-013-0004-0
122 rdf:type schema:CreativeWork
123 sg:pub.10.2478/s13540-013-0059-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1038734521
124 https://doi.org/10.2478/s13540-013-0059-y
125 rdf:type schema:CreativeWork
126 https://app.dimensions.ai/details/publication/pub.1001065131 schema:CreativeWork
127 https://app.dimensions.ai/details/publication/pub.1099011931 schema:CreativeWork
128 https://doi.org/10.1006/jmaa.2000.7194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044075268
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.jmaa.2006.10.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034576115
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.na.2008.02.087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008029014
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.na.2009.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019640599
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.nonrwa.2010.05.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002058767
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1080/00036811.2014.905679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008063456
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1142/8180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098951292
141 rdf:type schema:CreativeWork
142 https://doi.org/10.12988/nade.2013.13014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064858450
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1515/jaa-2012-0014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003884865
145 rdf:type schema:CreativeWork
146 https://doi.org/10.26637/mjm0603/0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106497655
147 rdf:type schema:CreativeWork
148 https://doi.org/10.3390/math3020398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018076472
149 rdf:type schema:CreativeWork
150 https://doi.org/10.7494/opmath.2011.31.3.341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073758481
151 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...