On the Geometry of Higher Dimensional Heisenberg Groups View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Mehri Nasehi

ABSTRACT

In this paper, we first completely determine all left-invariant generalized Ricci solitons on the Heisenberg group H2n+1 equipped with any left-invariant Riemannian and Lorentzian metric that this Lie group admits. Then, we explicitly calculate the energy of an arbitrary left-invariant vector field V on these spaces and in the Lorentzian cases we determine the exact form of all left-invariant unit time-like vector fields which are spatially harmonic. We also obtain all of the descriptions of their homogeneous Riemannian and Lorentzian structures and explicitly distinguish their types. Finally, we investigate parallel hypersurfaces of these spaces and show that these spaces never admit any totally geodesic hypersurface. The existence of algebraic Ricci solitons and the non-existence of left-invariant Ricci solitons and Yamabe solitons on these spaces in both Riemannian and Lorentzian cases is proved. Also, different behaviors regarding the existence of harmonic maps, critical points for the energy functional restricted to vector fields and some equations in Riemannian and Lorentzian cases are found. More... »

PAGES

29

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00009-019-1303-4

DOI

http://dx.doi.org/10.1007/s00009-019-1303-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112094344


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Islamic Azad University of Shahreza", 
          "id": "https://www.grid.ac/institutes/grid.460118.a", 
          "name": [
            "Faculty of Basic Sciences, University of Shahreza, P. O. Box: 86149-56841, Shahreza, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nasehi", 
        "givenName": "Mehri", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10587-016-0274-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000551798", 
          "https://doi.org/10.1007/s10587-016-0274-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10587-016-0274-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000551798", 
          "https://doi.org/10.1007/s10587-016-0274-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10474-014-0426-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009110616", 
          "https://doi.org/10.1007/s10474-014-0426-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2478/s11533-011-0109-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012622738", 
          "https://doi.org/10.2478/s11533-011-0109-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10711-005-9030-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013214542", 
          "https://doi.org/10.1007/s10711-005-9030-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10711-005-9030-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013214542", 
          "https://doi.org/10.1007/s10711-005-9030-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12220-015-9592-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013976318", 
          "https://doi.org/10.1007/s12220-015-9592-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomphys.2015.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018668499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0393-0440(92)90033-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019416195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00025-012-0304-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019660424", 
          "https://doi.org/10.1007/s00025-012-0304-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00004456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020187798", 
          "https://doi.org/10.1007/pl00004456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00151525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027975892", 
          "https://doi.org/10.1007/bf00151525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00151525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027975892", 
          "https://doi.org/10.1007/bf00151525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00025-013-0312-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029990077", 
          "https://doi.org/10.1007/s00025-013-0312-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00025-013-0312-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029990077", 
          "https://doi.org/10.1007/s00025-013-0312-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/advgeom-2015-0025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031497263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10474-012-0232-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035912892", 
          "https://doi.org/10.1007/s10474-012-0232-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1049850436", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0076902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049850436", 
          "https://doi.org/10.1007/bfb0076902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0076902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049850436", 
          "https://doi.org/10.1007/bfb0076902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10711-015-0116-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051067324", 
          "https://doi.org/10.1007/s10711-015-0116-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5817/am2016-4-221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087135155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00009-017-1019-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092001277", 
          "https://doi.org/10.1007/s00009-017-1019-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781107325531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098682756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.21136/cmj.2018.0635-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101329180", 
          "https://doi.org/10.21136/cmj.2018.0635-16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.21136/cmj.2018.0635-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101329180", 
          "https://doi.org/10.21136/cmj.2018.0635-16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomphys.2018.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105209255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomphys.2018.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105209255"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In this paper, we first completely determine all left-invariant generalized Ricci solitons on the Heisenberg group H2n+1 equipped with any left-invariant Riemannian and Lorentzian metric that this Lie group admits. Then, we explicitly calculate the energy of an arbitrary left-invariant vector field V on these spaces and in the Lorentzian cases we determine the exact form of all left-invariant unit time-like vector fields which are spatially harmonic. We also obtain all of the descriptions of their homogeneous Riemannian and Lorentzian structures and explicitly distinguish their types. Finally, we investigate parallel hypersurfaces of these spaces and show that these spaces never admit any totally geodesic hypersurface. The existence of algebraic Ricci solitons and the non-existence of left-invariant Ricci solitons and Yamabe solitons on these spaces in both Riemannian and Lorentzian cases is proved. Also, different behaviors regarding the existence of harmonic maps, critical points for the energy functional restricted to vector fields and some equations in Riemannian and Lorentzian cases are found.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00009-019-1303-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135886", 
        "issn": [
          "1660-5446", 
          "1660-5454"
        ], 
        "name": "Mediterranean Journal of Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "On the Geometry of Higher Dimensional Heisenberg Groups", 
    "pagination": "29", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00009-019-1303-4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e2b42453b536c86b9e432587e1e756cf7858ca9bf4c7961b1da6271f5cb17156"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112094344"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00009-019-1303-4", 
      "https://app.dimensions.ai/details/publication/pub.1112094344"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56185_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00009-019-1303-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00009-019-1303-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00009-019-1303-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00009-019-1303-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00009-019-1303-4'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00009-019-1303-4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb51f15e03dea4cac9679d3f1c58350bf
4 schema:citation sg:pub.10.1007/bf00151525
5 sg:pub.10.1007/bfb0076902
6 sg:pub.10.1007/pl00004456
7 sg:pub.10.1007/s00009-017-1019-2
8 sg:pub.10.1007/s00025-012-0304-4
9 sg:pub.10.1007/s00025-013-0312-z
10 sg:pub.10.1007/s10474-012-0232-5
11 sg:pub.10.1007/s10474-014-0426-0
12 sg:pub.10.1007/s10587-016-0274-x
13 sg:pub.10.1007/s10711-005-9030-3
14 sg:pub.10.1007/s10711-015-0116-2
15 sg:pub.10.1007/s12220-015-9592-8
16 sg:pub.10.21136/cmj.2018.0635-16
17 sg:pub.10.2478/s11533-011-0109-9
18 https://app.dimensions.ai/details/publication/pub.1049850436
19 https://doi.org/10.1016/0393-0440(92)90033-w
20 https://doi.org/10.1016/j.geomphys.2015.01.005
21 https://doi.org/10.1016/j.geomphys.2018.06.008
22 https://doi.org/10.1017/cbo9781107325531
23 https://doi.org/10.1515/advgeom-2015-0025
24 https://doi.org/10.5817/am2016-4-221
25 schema:datePublished 2019-04
26 schema:datePublishedReg 2019-04-01
27 schema:description In this paper, we first completely determine all left-invariant generalized Ricci solitons on the Heisenberg group H2n+1 equipped with any left-invariant Riemannian and Lorentzian metric that this Lie group admits. Then, we explicitly calculate the energy of an arbitrary left-invariant vector field V on these spaces and in the Lorentzian cases we determine the exact form of all left-invariant unit time-like vector fields which are spatially harmonic. We also obtain all of the descriptions of their homogeneous Riemannian and Lorentzian structures and explicitly distinguish their types. Finally, we investigate parallel hypersurfaces of these spaces and show that these spaces never admit any totally geodesic hypersurface. The existence of algebraic Ricci solitons and the non-existence of left-invariant Ricci solitons and Yamabe solitons on these spaces in both Riemannian and Lorentzian cases is proved. Also, different behaviors regarding the existence of harmonic maps, critical points for the energy functional restricted to vector fields and some equations in Riemannian and Lorentzian cases are found.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N1dfd408f730a442d980c94cfb8a87be2
32 N39d4e4f398eb4dce855706994ad7627c
33 sg:journal.1135886
34 schema:name On the Geometry of Higher Dimensional Heisenberg Groups
35 schema:pagination 29
36 schema:productId N3e520e61472746a2b71320bbeeb7fcc8
37 N6344e5a56cd9468288124c9fd6c72e50
38 N9e6696bcfa7b4579b32d78c6a1b223d7
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112094344
40 https://doi.org/10.1007/s00009-019-1303-4
41 schema:sdDatePublished 2019-04-15T09:23
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nd755f6fce5294f889511fac5ee3f67cd
44 schema:url https://link.springer.com/10.1007%2Fs00009-019-1303-4
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N1dfd408f730a442d980c94cfb8a87be2 schema:issueNumber 2
49 rdf:type schema:PublicationIssue
50 N39d4e4f398eb4dce855706994ad7627c schema:volumeNumber 16
51 rdf:type schema:PublicationVolume
52 N3e520e61472746a2b71320bbeeb7fcc8 schema:name doi
53 schema:value 10.1007/s00009-019-1303-4
54 rdf:type schema:PropertyValue
55 N6344e5a56cd9468288124c9fd6c72e50 schema:name dimensions_id
56 schema:value pub.1112094344
57 rdf:type schema:PropertyValue
58 N63ffab565d614db29adcfb1c324522f1 schema:affiliation https://www.grid.ac/institutes/grid.460118.a
59 schema:familyName Nasehi
60 schema:givenName Mehri
61 rdf:type schema:Person
62 N9e6696bcfa7b4579b32d78c6a1b223d7 schema:name readcube_id
63 schema:value e2b42453b536c86b9e432587e1e756cf7858ca9bf4c7961b1da6271f5cb17156
64 rdf:type schema:PropertyValue
65 Nb51f15e03dea4cac9679d3f1c58350bf rdf:first N63ffab565d614db29adcfb1c324522f1
66 rdf:rest rdf:nil
67 Nd755f6fce5294f889511fac5ee3f67cd schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
73 schema:name Pure Mathematics
74 rdf:type schema:DefinedTerm
75 sg:journal.1135886 schema:issn 1660-5446
76 1660-5454
77 schema:name Mediterranean Journal of Mathematics
78 rdf:type schema:Periodical
79 sg:pub.10.1007/bf00151525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027975892
80 https://doi.org/10.1007/bf00151525
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bfb0076902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049850436
83 https://doi.org/10.1007/bfb0076902
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/pl00004456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020187798
86 https://doi.org/10.1007/pl00004456
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s00009-017-1019-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092001277
89 https://doi.org/10.1007/s00009-017-1019-2
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s00025-012-0304-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019660424
92 https://doi.org/10.1007/s00025-012-0304-4
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s00025-013-0312-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1029990077
95 https://doi.org/10.1007/s00025-013-0312-z
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s10474-012-0232-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035912892
98 https://doi.org/10.1007/s10474-012-0232-5
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s10474-014-0426-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009110616
101 https://doi.org/10.1007/s10474-014-0426-0
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s10587-016-0274-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000551798
104 https://doi.org/10.1007/s10587-016-0274-x
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s10711-005-9030-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013214542
107 https://doi.org/10.1007/s10711-005-9030-3
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s10711-015-0116-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051067324
110 https://doi.org/10.1007/s10711-015-0116-2
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s12220-015-9592-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013976318
113 https://doi.org/10.1007/s12220-015-9592-8
114 rdf:type schema:CreativeWork
115 sg:pub.10.21136/cmj.2018.0635-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101329180
116 https://doi.org/10.21136/cmj.2018.0635-16
117 rdf:type schema:CreativeWork
118 sg:pub.10.2478/s11533-011-0109-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012622738
119 https://doi.org/10.2478/s11533-011-0109-9
120 rdf:type schema:CreativeWork
121 https://app.dimensions.ai/details/publication/pub.1049850436 schema:CreativeWork
122 https://doi.org/10.1016/0393-0440(92)90033-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1019416195
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.geomphys.2015.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018668499
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.geomphys.2018.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105209255
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1017/cbo9781107325531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098682756
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1515/advgeom-2015-0025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031497263
131 rdf:type schema:CreativeWork
132 https://doi.org/10.5817/am2016-4-221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087135155
133 rdf:type schema:CreativeWork
134 https://www.grid.ac/institutes/grid.460118.a schema:alternateName Islamic Azad University of Shahreza
135 schema:name Faculty of Basic Sciences, University of Shahreza, P. O. Box: 86149-56841, Shahreza, Iran
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...