Infinitely Many Homoclinic Solutions for a Class of Indefinite Perturbed Second-Order Hamiltonian Systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10

AUTHORS

Liang Zhang, Xianhua Tang, Yi Chen

ABSTRACT

In this paper, we study the existence of infinitely many homoclinic solutions of the perturbed second-order Hamiltonian system -u¨(t)+L(t)u=Wu(t,u(t))+Gu(t,u(t)),where L(t) and W(t,u) are neither autonomous nor periodic in t. Under the assumptions that W(t,u) is indefinite in sign and only locally superquadratic as |u|→+∞ and G(t,u) is not even in u, we prove the existence of infinitely many homoclinic solutions in spite of the lack of the symmetry of this problem by Bolle’s perturbation method in critical point theory. Our results generalize some known results and are even new in the symmetric case. More... »

PAGES

3673-3690

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00009-016-0708-6

DOI

http://dx.doi.org/10.1007/s00009-016-0708-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007922458


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Jinan", 
          "id": "https://www.grid.ac/institutes/grid.454761.5", 
          "name": [
            "School of Mathematical Sciences, University of Jinan, 250022, Jinan, Shangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Liang", 
        "id": "sg:person.014053567301.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014053567301.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Mathematics and Statistics, Central South University, 410083, Changsha, Hunan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Xianhua", 
        "id": "sg:person.013513063451.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013513063451.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China University of Mining and Technology", 
          "id": "https://www.grid.ac/institutes/grid.411510.0", 
          "name": [
            "Department of Mathematics, China University of Mining and Technology, 221116, Xuzhou, Jiangsu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yi", 
        "id": "sg:person.015215721731.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015215721731.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmaa.2008.10.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004164503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2008.12.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004731284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01299609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005223358", 
          "https://doi.org/10.1007/bf01299609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01299609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005223358", 
          "https://doi.org/10.1007/bf01299609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0362-546x(94)00229-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008556727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jdeq.1998.3484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009323742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jde.2005.06.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011717347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jde.2005.06.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011717347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1981-0621969-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016333194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002290050219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019597129", 
          "https://doi.org/10.1007/s002290050219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02571356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020294129", 
          "https://doi.org/10.1007/bf02571356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02571356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020294129", 
          "https://doi.org/10.1007/bf02571356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605309608821196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021042067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/ans-2003-0101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025125231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2005.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028789704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1982-0662065-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034901269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1046348650", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1046348650", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2003.10.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049238980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0308210500024240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054894107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2939286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070140170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/dcdsb.2011.15.255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071736576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/cbms/065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098722172"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10", 
    "datePublishedReg": "2016-10-01", 
    "description": "In this paper, we study the existence of infinitely many homoclinic solutions of the perturbed second-order Hamiltonian system -u\u00a8(t)+L(t)u=Wu(t,u(t))+Gu(t,u(t)),where L(t) and W(t,u) are neither autonomous nor periodic in t. Under the assumptions that W(t,u) is indefinite in sign and only locally superquadratic as |u|\u2192+\u221e and G(t,u) is not even in u, we prove the existence of infinitely many homoclinic solutions in spite of the lack of the symmetry of this problem by Bolle\u2019s perturbation method in critical point theory. Our results generalize some known results and are even new in the symmetric case.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00009-016-0708-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135886", 
        "issn": [
          "1660-5446", 
          "1660-5454"
        ], 
        "name": "Mediterranean Journal of Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Infinitely Many Homoclinic Solutions for a Class of Indefinite Perturbed Second-Order Hamiltonian Systems", 
    "pagination": "3673-3690", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "25bd871abbb53113dca57d154b597b5a7262d40f4c0735a4519f3124403d0b35"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00009-016-0708-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007922458"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00009-016-0708-6", 
      "https://app.dimensions.ai/details/publication/pub.1007922458"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00009-016-0708-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00009-016-0708-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00009-016-0708-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00009-016-0708-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00009-016-0708-6'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00009-016-0708-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N738e37f978814512a4736ff651c5da70
4 schema:citation sg:pub.10.1007/bf01299609
5 sg:pub.10.1007/bf02571356
6 sg:pub.10.1007/s002290050219
7 https://app.dimensions.ai/details/publication/pub.1046348650
8 https://doi.org/10.1006/jdeq.1998.3484
9 https://doi.org/10.1016/0362-546x(94)00229-b
10 https://doi.org/10.1016/j.jde.2005.06.029
11 https://doi.org/10.1016/j.jfa.2005.06.014
12 https://doi.org/10.1016/j.jmaa.2003.10.026
13 https://doi.org/10.1016/j.jmaa.2008.10.038
14 https://doi.org/10.1016/j.jmaa.2008.12.052
15 https://doi.org/10.1017/s0308210500024240
16 https://doi.org/10.1080/03605309608821196
17 https://doi.org/10.1090/cbms/065
18 https://doi.org/10.1090/s0002-9947-1981-0621969-9
19 https://doi.org/10.1090/s0002-9947-1982-0662065-5
20 https://doi.org/10.1515/ans-2003-0101
21 https://doi.org/10.2307/2939286
22 https://doi.org/10.3934/dcdsb.2011.15.255
23 schema:datePublished 2016-10
24 schema:datePublishedReg 2016-10-01
25 schema:description In this paper, we study the existence of infinitely many homoclinic solutions of the perturbed second-order Hamiltonian system -u¨(t)+L(t)u=Wu(t,u(t))+Gu(t,u(t)),where L(t) and W(t,u) are neither autonomous nor periodic in t. Under the assumptions that W(t,u) is indefinite in sign and only locally superquadratic as |u|→+∞ and G(t,u) is not even in u, we prove the existence of infinitely many homoclinic solutions in spite of the lack of the symmetry of this problem by Bolle’s perturbation method in critical point theory. Our results generalize some known results and are even new in the symmetric case.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N274880189fea4713b61342b0074bb06a
30 Nf2e116cc61fa4f558b6f6ac34e52ac86
31 sg:journal.1135886
32 schema:name Infinitely Many Homoclinic Solutions for a Class of Indefinite Perturbed Second-Order Hamiltonian Systems
33 schema:pagination 3673-3690
34 schema:productId N45de4ada4304450a868add7b1067626e
35 Nf5ab36b99786488288f05d4d808efa12
36 Nfd113330433b45869e20ec3711a22f96
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007922458
38 https://doi.org/10.1007/s00009-016-0708-6
39 schema:sdDatePublished 2019-04-10T19:01
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N7b3b1f7c876e4a8388d59ff4582eaca8
42 schema:url http://link.springer.com/10.1007/s00009-016-0708-6
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N24ef05dfd846446a8da8cd2db371ffa6 rdf:first sg:person.015215721731.35
47 rdf:rest rdf:nil
48 N271b201485d8415687e56846b77d62c9 rdf:first sg:person.013513063451.29
49 rdf:rest N24ef05dfd846446a8da8cd2db371ffa6
50 N274880189fea4713b61342b0074bb06a schema:volumeNumber 13
51 rdf:type schema:PublicationVolume
52 N45de4ada4304450a868add7b1067626e schema:name dimensions_id
53 schema:value pub.1007922458
54 rdf:type schema:PropertyValue
55 N738e37f978814512a4736ff651c5da70 rdf:first sg:person.014053567301.03
56 rdf:rest N271b201485d8415687e56846b77d62c9
57 N7b3b1f7c876e4a8388d59ff4582eaca8 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nf2e116cc61fa4f558b6f6ac34e52ac86 schema:issueNumber 5
60 rdf:type schema:PublicationIssue
61 Nf5ab36b99786488288f05d4d808efa12 schema:name readcube_id
62 schema:value 25bd871abbb53113dca57d154b597b5a7262d40f4c0735a4519f3124403d0b35
63 rdf:type schema:PropertyValue
64 Nfd113330433b45869e20ec3711a22f96 schema:name doi
65 schema:value 10.1007/s00009-016-0708-6
66 rdf:type schema:PropertyValue
67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
68 schema:name Mathematical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
71 schema:name Pure Mathematics
72 rdf:type schema:DefinedTerm
73 sg:journal.1135886 schema:issn 1660-5446
74 1660-5454
75 schema:name Mediterranean Journal of Mathematics
76 rdf:type schema:Periodical
77 sg:person.013513063451.29 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
78 schema:familyName Tang
79 schema:givenName Xianhua
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013513063451.29
81 rdf:type schema:Person
82 sg:person.014053567301.03 schema:affiliation https://www.grid.ac/institutes/grid.454761.5
83 schema:familyName Zhang
84 schema:givenName Liang
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014053567301.03
86 rdf:type schema:Person
87 sg:person.015215721731.35 schema:affiliation https://www.grid.ac/institutes/grid.411510.0
88 schema:familyName Chen
89 schema:givenName Yi
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015215721731.35
91 rdf:type schema:Person
92 sg:pub.10.1007/bf01299609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005223358
93 https://doi.org/10.1007/bf01299609
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf02571356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020294129
96 https://doi.org/10.1007/bf02571356
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s002290050219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019597129
99 https://doi.org/10.1007/s002290050219
100 rdf:type schema:CreativeWork
101 https://app.dimensions.ai/details/publication/pub.1046348650 schema:CreativeWork
102 https://doi.org/10.1006/jdeq.1998.3484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009323742
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0362-546x(94)00229-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1008556727
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.jde.2005.06.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011717347
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.jfa.2005.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028789704
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.jmaa.2003.10.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049238980
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.jmaa.2008.10.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004164503
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.jmaa.2008.12.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004731284
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1017/s0308210500024240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054894107
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1080/03605309608821196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021042067
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1090/cbms/065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098722172
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1090/s0002-9947-1981-0621969-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016333194
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1090/s0002-9947-1982-0662065-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034901269
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1515/ans-2003-0101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025125231
127 rdf:type schema:CreativeWork
128 https://doi.org/10.2307/2939286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070140170
129 rdf:type schema:CreativeWork
130 https://doi.org/10.3934/dcdsb.2011.15.255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071736576
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.216417.7 schema:alternateName Central South University
133 schema:name School of Mathematics and Statistics, Central South University, 410083, Changsha, Hunan, People’s Republic of China
134 rdf:type schema:Organization
135 https://www.grid.ac/institutes/grid.411510.0 schema:alternateName China University of Mining and Technology
136 schema:name Department of Mathematics, China University of Mining and Technology, 221116, Xuzhou, Jiangsu, People’s Republic of China
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.454761.5 schema:alternateName University of Jinan
139 schema:name School of Mathematical Sciences, University of Jinan, 250022, Jinan, Shangdong, People’s Republic of China
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...