On Multistep Methods for Differential Equations of Fractional Order View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-11

AUTHORS

Luciano Galeone, Roberto Garrappa

ABSTRACT

.This paper concerns with numerical methods for the treatment of differential equations of fractional order. Our attention is concentrated on fractional multistep methods of both implicit and explicit type, for which order conditions and stability properties are investigated.

PAGES

565-580

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00009-006-0097-3

DOI

http://dx.doi.org/10.1007/s00009-006-0097-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011234594


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento di Matematica, Universit\u00e0 di Bari, 70126, Bari, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7644.1", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Bari, 70126, Bari, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galeone", 
        "givenName": "Luciano", 
        "id": "sg:person.013347602235.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013347602235.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Matematica, Universit\u00e0 di Bari, 70126, Bari, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7644.1", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Bari, 70126, Bari, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garrappa", 
        "givenName": "Roberto", 
        "id": "sg:person.014145162635.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145162635.52"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006-11", 
    "datePublishedReg": "2006-11-01", 
    "description": "Abstract.This paper concerns with numerical methods for the treatment of differential equations of fractional order. Our attention is concentrated on fractional multistep methods of both implicit and explicit type, for which order conditions and stability properties are investigated.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00009-006-0097-3", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135886", 
        "issn": [
          "1660-5446", 
          "1660-5454"
        ], 
        "name": "Mediterranean Journal of Mathematics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "differential equations", 
      "multistep methods", 
      "fractional order", 
      "stability properties", 
      "numerical method", 
      "explicit type", 
      "equations", 
      "order conditions", 
      "order", 
      "properties", 
      "conditions", 
      "types", 
      "attention", 
      "treatment", 
      "method", 
      "paper"
    ], 
    "name": "On Multistep Methods for Differential Equations of Fractional Order", 
    "pagination": "565-580", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011234594"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00009-006-0097-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00009-006-0097-3", 
      "https://app.dimensions.ai/details/publication/pub.1011234594"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00009-006-0097-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00009-006-0097-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00009-006-0097-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00009-006-0097-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00009-006-0097-3'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      20 PREDICATES      41 URIs      33 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00009-006-0097-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N871242dce64d4bc2b13df7a1f178109f
4 schema:datePublished 2006-11
5 schema:datePublishedReg 2006-11-01
6 schema:description Abstract.This paper concerns with numerical methods for the treatment of differential equations of fractional order. Our attention is concentrated on fractional multistep methods of both implicit and explicit type, for which order conditions and stability properties are investigated.
7 schema:genre article
8 schema:isAccessibleForFree false
9 schema:isPartOf Nc37b037b9e0c4b2084ee729d34c4149d
10 Neac4f558f07645f7ba98c0000a59c9c8
11 sg:journal.1135886
12 schema:keywords attention
13 conditions
14 differential equations
15 equations
16 explicit type
17 fractional order
18 method
19 multistep methods
20 numerical method
21 order
22 order conditions
23 paper
24 properties
25 stability properties
26 treatment
27 types
28 schema:name On Multistep Methods for Differential Equations of Fractional Order
29 schema:pagination 565-580
30 schema:productId N39096bf9826d45888f658f22d3778c9c
31 Ne8d07ab7598e49b9a2a43396066ab4c6
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011234594
33 https://doi.org/10.1007/s00009-006-0097-3
34 schema:sdDatePublished 2022-10-01T06:33
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N4b3575029a744436aebfa8501bd469e6
37 schema:url https://doi.org/10.1007/s00009-006-0097-3
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N39096bf9826d45888f658f22d3778c9c schema:name doi
42 schema:value 10.1007/s00009-006-0097-3
43 rdf:type schema:PropertyValue
44 N4b3575029a744436aebfa8501bd469e6 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N79e7606b7891463cb85c3f5d93a47694 rdf:first sg:person.014145162635.52
47 rdf:rest rdf:nil
48 N871242dce64d4bc2b13df7a1f178109f rdf:first sg:person.013347602235.71
49 rdf:rest N79e7606b7891463cb85c3f5d93a47694
50 Nc37b037b9e0c4b2084ee729d34c4149d schema:volumeNumber 3
51 rdf:type schema:PublicationVolume
52 Ne8d07ab7598e49b9a2a43396066ab4c6 schema:name dimensions_id
53 schema:value pub.1011234594
54 rdf:type schema:PropertyValue
55 Neac4f558f07645f7ba98c0000a59c9c8 schema:issueNumber 3-4
56 rdf:type schema:PublicationIssue
57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
61 schema:name Pure Mathematics
62 rdf:type schema:DefinedTerm
63 sg:journal.1135886 schema:issn 1660-5446
64 1660-5454
65 schema:name Mediterranean Journal of Mathematics
66 schema:publisher Springer Nature
67 rdf:type schema:Periodical
68 sg:person.013347602235.71 schema:affiliation grid-institutes:grid.7644.1
69 schema:familyName Galeone
70 schema:givenName Luciano
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013347602235.71
72 rdf:type schema:Person
73 sg:person.014145162635.52 schema:affiliation grid-institutes:grid.7644.1
74 schema:familyName Garrappa
75 schema:givenName Roberto
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145162635.52
77 rdf:type schema:Person
78 grid-institutes:grid.7644.1 schema:alternateName Dipartimento di Matematica, Università di Bari, 70126, Bari, Italy
79 schema:name Dipartimento di Matematica, Università di Bari, 70126, Bari, Italy
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...