Zeros of Zeon Polynomials and the Zeon Quadratic Formula View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Erin Haake, G. Stacey Staples

ABSTRACT

Zeon algebras arise as commutative subalgebras of fermions, and can be constructed as subalgebras of Clifford algebras of appropriate signature. Their combinatorial properties have been applied to graph enumeration problems, stochastic integrals, and even routing problems in communication networks. Analogous to real polynomial functions, zeon polynomial functions are defined as zeon-valued polynomial functions of a zeon variable. In this paper, properties of zeon polynomials and their zeros are considered. Nilpotent and invertible zeon zeros of polynomials with real coefficients are characterized, and necessary conditions are established for the existence of zeros of polynomials with zeon coefficients. Quadratic polynomials with zeon coefficients are considered in detail. A “zeon quadratic formula” is developed, and solutions of ax2+bx+c=0 are characterized with respect to the “zeon discriminant” of the equation. More... »

PAGES

21

References to SciGraph publications

  • 2017-06. Zeon Roots in ADVANCES IN APPLIED CLIFFORD ALGEBRAS
  • 2018-03. Elementary Functions and Factorizations of Zeons in ADVANCES IN APPLIED CLIFFORD ALGEBRAS
  • 2008-09. A New Adjacency Matrix for Finite Graphs in ADVANCES IN APPLIED CLIFFORD ALGEBRAS
  • 2017-12. Hamiltonian Cycle Enumeration via Fermion-Zeon Convolution in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00006-019-0938-3

    DOI

    http://dx.doi.org/10.1007/s00006-019-0938-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111601125


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Southern Illinois University Edwardsville", 
              "id": "https://www.grid.ac/institutes/grid.263857.d", 
              "name": [
                "Department of Mathematics and Statistics, Southern Illinois University Edwardsville, 62026-1653, Edwardsville, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haake", 
            "givenName": "Erin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southern Illinois University Edwardsville", 
              "id": "https://www.grid.ac/institutes/grid.263857.d", 
              "name": [
                "Department of Mathematics and Statistics, Southern Illinois University Edwardsville, 62026-1653, Edwardsville, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Staples", 
            "givenName": "G. Stacey", 
            "id": "sg:person.013015301341.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015301341.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ejc.2007.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026582388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00006-008-0116-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027228484", 
              "https://doi.org/10.1007/s00006-008-0116-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00006-008-0116-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027228484", 
              "https://doi.org/10.1007/s00006-008-0116-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2746285.2746301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032144501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00006-016-0732-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034086571", 
              "https://doi.org/10.1007/s00006-016-0732-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00006-016-0732-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034086571", 
              "https://doi.org/10.1007/s00006-016-0732-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/130906684", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062870385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-017-3381-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084932623", 
              "https://doi.org/10.1007/s10773-017-3381-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-017-3381-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084932623", 
              "https://doi.org/10.1007/s10773-017-3381-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00006-018-0836-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100823037", 
              "https://doi.org/10.1007/s00006-018-0836-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.31390/cosa.4.3.02", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104574136"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "Zeon algebras arise as commutative subalgebras of fermions, and can be constructed as subalgebras of Clifford algebras of appropriate signature. Their combinatorial properties have been applied to graph enumeration problems, stochastic integrals, and even routing problems in communication networks. Analogous to real polynomial functions, zeon polynomial functions are defined as zeon-valued polynomial functions of a zeon variable. In this paper, properties of zeon polynomials and their zeros are considered. Nilpotent and invertible zeon zeros of polynomials with real coefficients are characterized, and necessary conditions are established for the existence of zeros of polynomials with zeon coefficients. Quadratic polynomials with zeon coefficients are considered in detail. A \u201czeon quadratic formula\u201d is developed, and solutions of ax2+bx+c=0 are characterized with respect to the \u201czeon discriminant\u201d of the equation.", 
        "genre": "non_research_article", 
        "id": "sg:pub.10.1007/s00006-019-0938-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136750", 
            "issn": [
              "0188-7009", 
              "1661-4909"
            ], 
            "name": "Advances in Applied Clifford Algebras", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "29"
          }
        ], 
        "name": "Zeros of Zeon Polynomials and the Zeon Quadratic Formula", 
        "pagination": "21", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2873e864d6352e41e440df11af266f4f26292dd68e760e3d38142102e7b8ef36"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00006-019-0938-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111601125"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00006-019-0938-3", 
          "https://app.dimensions.ai/details/publication/pub.1111601125"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70028_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00006-019-0938-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00006-019-0938-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00006-019-0938-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00006-019-0938-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00006-019-0938-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    95 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00006-019-0938-3 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N965dc7c8d81d4a998da526a099bb121f
    4 schema:citation sg:pub.10.1007/s00006-008-0116-5
    5 sg:pub.10.1007/s00006-016-0732-4
    6 sg:pub.10.1007/s00006-018-0836-0
    7 sg:pub.10.1007/s10773-017-3381-z
    8 https://doi.org/10.1016/j.ejc.2007.07.003
    9 https://doi.org/10.1137/130906684
    10 https://doi.org/10.1145/2746285.2746301
    11 https://doi.org/10.31390/cosa.4.3.02
    12 schema:datePublished 2019-02
    13 schema:datePublishedReg 2019-02-01
    14 schema:description Zeon algebras arise as commutative subalgebras of fermions, and can be constructed as subalgebras of Clifford algebras of appropriate signature. Their combinatorial properties have been applied to graph enumeration problems, stochastic integrals, and even routing problems in communication networks. Analogous to real polynomial functions, zeon polynomial functions are defined as zeon-valued polynomial functions of a zeon variable. In this paper, properties of zeon polynomials and their zeros are considered. Nilpotent and invertible zeon zeros of polynomials with real coefficients are characterized, and necessary conditions are established for the existence of zeros of polynomials with zeon coefficients. Quadratic polynomials with zeon coefficients are considered in detail. A “zeon quadratic formula” is developed, and solutions of ax2+bx+c=0 are characterized with respect to the “zeon discriminant” of the equation.
    15 schema:genre non_research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N6f0c2b91ec784e6c961b0b736135cc2d
    19 N7ad39819a1fb466ca2ecd1c088c25fa6
    20 sg:journal.1136750
    21 schema:name Zeros of Zeon Polynomials and the Zeon Quadratic Formula
    22 schema:pagination 21
    23 schema:productId N41b859b56a664ae0969a2bac2ce0ab62
    24 Nc6e5a93926024b46826ba281b843a0a7
    25 Ned375cbbd23943478e17ab6093d93d5b
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111601125
    27 https://doi.org/10.1007/s00006-019-0938-3
    28 schema:sdDatePublished 2019-04-11T12:36
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher Na2849ee9ca964af4951992157c2f0aec
    31 schema:url https://link.springer.com/10.1007%2Fs00006-019-0938-3
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N41b859b56a664ae0969a2bac2ce0ab62 schema:name doi
    36 schema:value 10.1007/s00006-019-0938-3
    37 rdf:type schema:PropertyValue
    38 N6f0c2b91ec784e6c961b0b736135cc2d schema:issueNumber 1
    39 rdf:type schema:PublicationIssue
    40 N7ad39819a1fb466ca2ecd1c088c25fa6 schema:volumeNumber 29
    41 rdf:type schema:PublicationVolume
    42 N965dc7c8d81d4a998da526a099bb121f rdf:first N9c1a826a3c104032b742e0a65ee14420
    43 rdf:rest Nb4ed78eadcd246329d466788435e3bca
    44 N9c1a826a3c104032b742e0a65ee14420 schema:affiliation https://www.grid.ac/institutes/grid.263857.d
    45 schema:familyName Haake
    46 schema:givenName Erin
    47 rdf:type schema:Person
    48 Na2849ee9ca964af4951992157c2f0aec schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 Nb4ed78eadcd246329d466788435e3bca rdf:first sg:person.013015301341.40
    51 rdf:rest rdf:nil
    52 Nc6e5a93926024b46826ba281b843a0a7 schema:name dimensions_id
    53 schema:value pub.1111601125
    54 rdf:type schema:PropertyValue
    55 Ned375cbbd23943478e17ab6093d93d5b schema:name readcube_id
    56 schema:value 2873e864d6352e41e440df11af266f4f26292dd68e760e3d38142102e7b8ef36
    57 rdf:type schema:PropertyValue
    58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Mathematical Sciences
    60 rdf:type schema:DefinedTerm
    61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Pure Mathematics
    63 rdf:type schema:DefinedTerm
    64 sg:journal.1136750 schema:issn 0188-7009
    65 1661-4909
    66 schema:name Advances in Applied Clifford Algebras
    67 rdf:type schema:Periodical
    68 sg:person.013015301341.40 schema:affiliation https://www.grid.ac/institutes/grid.263857.d
    69 schema:familyName Staples
    70 schema:givenName G. Stacey
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015301341.40
    72 rdf:type schema:Person
    73 sg:pub.10.1007/s00006-008-0116-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027228484
    74 https://doi.org/10.1007/s00006-008-0116-5
    75 rdf:type schema:CreativeWork
    76 sg:pub.10.1007/s00006-016-0732-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034086571
    77 https://doi.org/10.1007/s00006-016-0732-4
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/s00006-018-0836-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100823037
    80 https://doi.org/10.1007/s00006-018-0836-0
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/s10773-017-3381-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1084932623
    83 https://doi.org/10.1007/s10773-017-3381-z
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/j.ejc.2007.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026582388
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1137/130906684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062870385
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1145/2746285.2746301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032144501
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.31390/cosa.4.3.02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104574136
    92 rdf:type schema:CreativeWork
    93 https://www.grid.ac/institutes/grid.263857.d schema:alternateName Southern Illinois University Edwardsville
    94 schema:name Department of Mathematics and Statistics, Southern Illinois University Edwardsville, 62026-1653, Edwardsville, IL, USA
    95 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...