Norm Inequalities in Zeon Algebras View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Theresa Lindell, G. Stacey Staples

ABSTRACT

The zeon (“nil-Clifford”) algebra Cℓnnil can be thought of as a commutative analogue of the n-particle fermion algebra and can be constructed as a subalgebra of a Clifford algebra. Combinatorial properties of the algebra make it useful for applications in graph theory and theoretical computer science. In this paper, the zeon p-norms and infinity norms are introduced. The 1-norm is shown to be the only sub-multiplicative p-norm on zeon algebras. Multiplicative inequalities involving the infinity norm (which is not sub-multiplicative) are developed and equivalence of norms in Cℓnnil is used to establish a number of multiplicative inequalities between p-norms and the infinity norm. As an application of norm inequalities, necessary and sufficient conditions for convergence of the zeon geometric series are established, and the series limit is expressed as a finite sum. The exposition is supplemented by a number of examples computed using Mathematica. More... »

PAGES

13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00006-018-0934-z

DOI

http://dx.doi.org/10.1007/s00006-018-0934-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110713049


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southern Illinois University Edwardsville", 
          "id": "https://www.grid.ac/institutes/grid.263857.d", 
          "name": [
            "Department of Mathematics and Statistics, Southern Illinois University Edwardsville, 62026-1653, Edwardsville, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindell", 
        "givenName": "Theresa", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Illinois University Edwardsville", 
          "id": "https://www.grid.ac/institutes/grid.263857.d", 
          "name": [
            "Department of Mathematics and Statistics, Southern Illinois University Edwardsville, 62026-1653, Edwardsville, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Staples", 
        "givenName": "G. Stacey", 
        "id": "sg:person.013015301341.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015301341.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00006-007-0063-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006910548", 
          "https://doi.org/10.1007/s00006-007-0063-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejc.2007.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026582388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00006-008-0116-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027228484", 
          "https://doi.org/10.1007/s00006-008-0116-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00006-008-0116-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027228484", 
          "https://doi.org/10.1007/s00006-008-0116-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00006-016-0732-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034086571", 
          "https://doi.org/10.1007/s00006-016-0732-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00006-016-0732-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034086571", 
          "https://doi.org/10.1007/s00006-016-0732-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2011/539030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034229013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2012.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036193911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/130906684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062870385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10773-017-3381-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084932623", 
          "https://doi.org/10.1007/s10773-017-3381-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10773-017-3381-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084932623", 
          "https://doi.org/10.1007/s10773-017-3381-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3095140.3097283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090283526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/p843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099037689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00006-018-0836-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100823037", 
          "https://doi.org/10.1007/s00006-018-0836-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "The zeon (\u201cnil-Clifford\u201d) algebra C\u2113nnil can be thought of as a commutative analogue of the n-particle fermion algebra and can be constructed as a subalgebra of a Clifford algebra. Combinatorial properties of the algebra make it useful for applications in graph theory and theoretical computer science. In this paper, the zeon p-norms and infinity norms are introduced. The 1-norm is shown to be the only sub-multiplicative p-norm on zeon algebras. Multiplicative inequalities involving the infinity norm (which is not sub-multiplicative) are developed and equivalence of norms in C\u2113nnil is used to establish a number of multiplicative inequalities between p-norms and the infinity norm. As an application of norm inequalities, necessary and sufficient conditions for convergence of the zeon geometric series are established, and the series limit is expressed as a finite sum. The exposition is supplemented by a number of examples computed using Mathematica.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00006-018-0934-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136750", 
        "issn": [
          "0188-7009", 
          "1661-4909"
        ], 
        "name": "Advances in Applied Clifford Algebras", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Norm Inequalities in Zeon Algebras", 
    "pagination": "13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "99e60d3ae293959e3385d18c9abd8024e58d19d11cf03c6d22b6ee92a7d9e05d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00006-018-0934-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110713049"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00006-018-0934-z", 
      "https://app.dimensions.ai/details/publication/pub.1110713049"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70049_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00006-018-0934-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00006-018-0934-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00006-018-0934-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00006-018-0934-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00006-018-0934-z'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00006-018-0934-z schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N80ee9d0ea0ec455a8969a34dd39713bf
4 schema:citation sg:pub.10.1007/s00006-007-0063-6
5 sg:pub.10.1007/s00006-008-0116-5
6 sg:pub.10.1007/s00006-016-0732-4
7 sg:pub.10.1007/s00006-018-0836-0
8 sg:pub.10.1007/s10773-017-3381-z
9 https://doi.org/10.1016/j.ejc.2007.07.003
10 https://doi.org/10.1016/j.patcog.2012.09.015
11 https://doi.org/10.1137/130906684
12 https://doi.org/10.1142/p843
13 https://doi.org/10.1145/3095140.3097283
14 https://doi.org/10.1155/2011/539030
15 schema:datePublished 2019-02
16 schema:datePublishedReg 2019-02-01
17 schema:description The zeon (“nil-Clifford”) algebra Cℓnnil can be thought of as a commutative analogue of the n-particle fermion algebra and can be constructed as a subalgebra of a Clifford algebra. Combinatorial properties of the algebra make it useful for applications in graph theory and theoretical computer science. In this paper, the zeon p-norms and infinity norms are introduced. The 1-norm is shown to be the only sub-multiplicative p-norm on zeon algebras. Multiplicative inequalities involving the infinity norm (which is not sub-multiplicative) are developed and equivalence of norms in Cℓnnil is used to establish a number of multiplicative inequalities between p-norms and the infinity norm. As an application of norm inequalities, necessary and sufficient conditions for convergence of the zeon geometric series are established, and the series limit is expressed as a finite sum. The exposition is supplemented by a number of examples computed using Mathematica.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N8991e6a76a704899b9aba57fbc772de1
22 Nd18a2f7986c94a218f0d6616edbb06dc
23 sg:journal.1136750
24 schema:name Norm Inequalities in Zeon Algebras
25 schema:pagination 13
26 schema:productId N27006df5f9324453ac57f94077ae2a04
27 N2bff3e5d47ea4b3c9d203ff79d2f6f2d
28 Nf984496f3f3e452597cf6b8fbf3c9613
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110713049
30 https://doi.org/10.1007/s00006-018-0934-z
31 schema:sdDatePublished 2019-04-11T12:40
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nb06819cbac7b4d07b87d35e17c4cd58c
34 schema:url https://link.springer.com/10.1007%2Fs00006-018-0934-z
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N27006df5f9324453ac57f94077ae2a04 schema:name dimensions_id
39 schema:value pub.1110713049
40 rdf:type schema:PropertyValue
41 N2bff3e5d47ea4b3c9d203ff79d2f6f2d schema:name doi
42 schema:value 10.1007/s00006-018-0934-z
43 rdf:type schema:PropertyValue
44 N3e95e14c5bdf48129ef91586cccac7b0 rdf:first sg:person.013015301341.40
45 rdf:rest rdf:nil
46 N80ee9d0ea0ec455a8969a34dd39713bf rdf:first Ndc54db84e22649a3920f7ea67d451b02
47 rdf:rest N3e95e14c5bdf48129ef91586cccac7b0
48 N8991e6a76a704899b9aba57fbc772de1 schema:volumeNumber 29
49 rdf:type schema:PublicationVolume
50 Nb06819cbac7b4d07b87d35e17c4cd58c schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Nd18a2f7986c94a218f0d6616edbb06dc schema:issueNumber 1
53 rdf:type schema:PublicationIssue
54 Ndc54db84e22649a3920f7ea67d451b02 schema:affiliation https://www.grid.ac/institutes/grid.263857.d
55 schema:familyName Lindell
56 schema:givenName Theresa
57 rdf:type schema:Person
58 Nf984496f3f3e452597cf6b8fbf3c9613 schema:name readcube_id
59 schema:value 99e60d3ae293959e3385d18c9abd8024e58d19d11cf03c6d22b6ee92a7d9e05d
60 rdf:type schema:PropertyValue
61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
62 schema:name Mathematical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
65 schema:name Pure Mathematics
66 rdf:type schema:DefinedTerm
67 sg:journal.1136750 schema:issn 0188-7009
68 1661-4909
69 schema:name Advances in Applied Clifford Algebras
70 rdf:type schema:Periodical
71 sg:person.013015301341.40 schema:affiliation https://www.grid.ac/institutes/grid.263857.d
72 schema:familyName Staples
73 schema:givenName G. Stacey
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015301341.40
75 rdf:type schema:Person
76 sg:pub.10.1007/s00006-007-0063-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006910548
77 https://doi.org/10.1007/s00006-007-0063-6
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/s00006-008-0116-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027228484
80 https://doi.org/10.1007/s00006-008-0116-5
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/s00006-016-0732-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034086571
83 https://doi.org/10.1007/s00006-016-0732-4
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/s00006-018-0836-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100823037
86 https://doi.org/10.1007/s00006-018-0836-0
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s10773-017-3381-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1084932623
89 https://doi.org/10.1007/s10773-017-3381-z
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.ejc.2007.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026582388
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.patcog.2012.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036193911
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1137/130906684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062870385
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1142/p843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099037689
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1145/3095140.3097283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090283526
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1155/2011/539030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034229013
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.263857.d schema:alternateName Southern Illinois University Edwardsville
104 schema:name Department of Mathematics and Statistics, Southern Illinois University Edwardsville, 62026-1653, Edwardsville, IL, USA
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...