Elementary Functions and Factorizations of Zeons View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03

AUTHORS

G. Stacey Staples, Alexander Weygandt

ABSTRACT

Algebraic properties of zeons are considered, including the existence of elementary factorizations and homogeneous factorizations of invertible zeons. A “zeon division algorithm” is established, showing that every nontrivial invertible zeon can be written as a sum of homogeneously decomposable zeons. Elementary functions (exponential, logarithmic, hyperbolic, and trigonometric) are extended to zeons, and a number of properties and identities are revealed. Finally, fast computation of logarithms is discussed for homogeneously decomposable zeons. More... »

PAGES

12

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00006-018-0836-0

DOI

http://dx.doi.org/10.1007/s00006-018-0836-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100823037


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southern Illinois University Edwardsville", 
          "id": "https://www.grid.ac/institutes/grid.263857.d", 
          "name": [
            "Department of Mathematics and Statistics, Southern Illinois University Edwardsville, 62026-1653, Edwardsville, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Staples", 
        "givenName": "G. Stacey", 
        "id": "sg:person.013015301341.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015301341.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Illinois University Edwardsville", 
          "id": "https://www.grid.ac/institutes/grid.263857.d", 
          "name": [
            "Department of Mathematics and Statistics, Southern Illinois University Edwardsville, 62026-1653, Edwardsville, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weygandt", 
        "givenName": "Alexander", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00006-008-0116-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027228484", 
          "https://doi.org/10.1007/s00006-008-0116-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00006-008-0116-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027228484", 
          "https://doi.org/10.1007/s00006-008-0116-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00006-016-0732-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034086571", 
          "https://doi.org/10.1007/s00006-016-0732-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00006-016-0732-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034086571", 
          "https://doi.org/10.1007/s00006-016-0732-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/130906684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062870385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/p843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099037689"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03", 
    "datePublishedReg": "2018-03-01", 
    "description": "Algebraic properties of zeons are considered, including the existence of elementary factorizations and homogeneous factorizations of invertible zeons. A \u201czeon division algorithm\u201d is established, showing that every nontrivial invertible zeon can be written as a sum of homogeneously decomposable zeons. Elementary functions (exponential, logarithmic, hyperbolic, and trigonometric) are extended to zeons, and a number of properties and identities are revealed. Finally, fast computation of logarithms is discussed for homogeneously decomposable zeons.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/s00006-018-0836-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136750", 
        "issn": [
          "0188-7009", 
          "1661-4909"
        ], 
        "name": "Advances in Applied Clifford Algebras", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Elementary Functions and Factorizations of Zeons", 
    "pagination": "12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b92d07ecce30add78bc1e079b819d9435df705532e450f9398d280f4772d7fde"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00006-018-0836-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100823037"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00006-018-0836-0", 
      "https://app.dimensions.ai/details/publication/pub.1100823037"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00006-018-0836-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00006-018-0836-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00006-018-0836-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00006-018-0836-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00006-018-0836-0'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00006-018-0836-0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N4ddb172b7e4b477186b9f5d8f9fd88ce
4 schema:citation sg:pub.10.1007/s00006-008-0116-5
5 sg:pub.10.1007/s00006-016-0732-4
6 https://doi.org/10.1137/130906684
7 https://doi.org/10.1142/p843
8 schema:datePublished 2018-03
9 schema:datePublishedReg 2018-03-01
10 schema:description Algebraic properties of zeons are considered, including the existence of elementary factorizations and homogeneous factorizations of invertible zeons. A “zeon division algorithm” is established, showing that every nontrivial invertible zeon can be written as a sum of homogeneously decomposable zeons. Elementary functions (exponential, logarithmic, hyperbolic, and trigonometric) are extended to zeons, and a number of properties and identities are revealed. Finally, fast computation of logarithms is discussed for homogeneously decomposable zeons.
11 schema:genre non_research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Nc433d6924d3848799484402469acf9a5
15 Nff9a677054104bd7b570b1c7f97aa2c3
16 sg:journal.1136750
17 schema:name Elementary Functions and Factorizations of Zeons
18 schema:pagination 12
19 schema:productId N05ce4701503b453e8a800b5ee1a2d213
20 N8c33b3de342643ca9bb55a0e6b28f566
21 Nb2887be46f6542e5b64bca66e03cf2a4
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100823037
23 https://doi.org/10.1007/s00006-018-0836-0
24 schema:sdDatePublished 2019-04-10T22:28
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N54e83a4053fd48a6a1c7d30203d3b552
27 schema:url http://link.springer.com/10.1007/s00006-018-0836-0
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N05ce4701503b453e8a800b5ee1a2d213 schema:name doi
32 schema:value 10.1007/s00006-018-0836-0
33 rdf:type schema:PropertyValue
34 N4ddb172b7e4b477186b9f5d8f9fd88ce rdf:first sg:person.013015301341.40
35 rdf:rest N743a30d86eb24227ae2d9e8d8621101b
36 N54e83a4053fd48a6a1c7d30203d3b552 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N55ea97e707b24c738d7e83cd4e1f5e76 schema:affiliation https://www.grid.ac/institutes/grid.263857.d
39 schema:familyName Weygandt
40 schema:givenName Alexander
41 rdf:type schema:Person
42 N743a30d86eb24227ae2d9e8d8621101b rdf:first N55ea97e707b24c738d7e83cd4e1f5e76
43 rdf:rest rdf:nil
44 N8c33b3de342643ca9bb55a0e6b28f566 schema:name readcube_id
45 schema:value b92d07ecce30add78bc1e079b819d9435df705532e450f9398d280f4772d7fde
46 rdf:type schema:PropertyValue
47 Nb2887be46f6542e5b64bca66e03cf2a4 schema:name dimensions_id
48 schema:value pub.1100823037
49 rdf:type schema:PropertyValue
50 Nc433d6924d3848799484402469acf9a5 schema:volumeNumber 28
51 rdf:type schema:PublicationVolume
52 Nff9a677054104bd7b570b1c7f97aa2c3 schema:issueNumber 1
53 rdf:type schema:PublicationIssue
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
58 schema:name Pure Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1136750 schema:issn 0188-7009
61 1661-4909
62 schema:name Advances in Applied Clifford Algebras
63 rdf:type schema:Periodical
64 sg:person.013015301341.40 schema:affiliation https://www.grid.ac/institutes/grid.263857.d
65 schema:familyName Staples
66 schema:givenName G. Stacey
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015301341.40
68 rdf:type schema:Person
69 sg:pub.10.1007/s00006-008-0116-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027228484
70 https://doi.org/10.1007/s00006-008-0116-5
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/s00006-016-0732-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034086571
73 https://doi.org/10.1007/s00006-016-0732-4
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1137/130906684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062870385
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1142/p843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099037689
78 rdf:type schema:CreativeWork
79 https://www.grid.ac/institutes/grid.263857.d schema:alternateName Southern Illinois University Edwardsville
80 schema:name Department of Mathematics and Statistics, Southern Illinois University Edwardsville, 62026-1653, Edwardsville, IL, USA
81 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...