Elementary Functions and Factorizations of Zeons View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03

AUTHORS

G. Stacey Staples, Alexander Weygandt

ABSTRACT

Algebraic properties of zeons are considered, including the existence of elementary factorizations and homogeneous factorizations of invertible zeons. A “zeon division algorithm” is established, showing that every nontrivial invertible zeon can be written as a sum of homogeneously decomposable zeons. Elementary functions (exponential, logarithmic, hyperbolic, and trigonometric) are extended to zeons, and a number of properties and identities are revealed. Finally, fast computation of logarithms is discussed for homogeneously decomposable zeons. More... »

PAGES

12

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00006-018-0836-0

DOI

http://dx.doi.org/10.1007/s00006-018-0836-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100823037


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southern Illinois University Edwardsville", 
          "id": "https://www.grid.ac/institutes/grid.263857.d", 
          "name": [
            "Department of Mathematics and Statistics, Southern Illinois University Edwardsville, 62026-1653, Edwardsville, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Staples", 
        "givenName": "G. Stacey", 
        "id": "sg:person.013015301341.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015301341.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Illinois University Edwardsville", 
          "id": "https://www.grid.ac/institutes/grid.263857.d", 
          "name": [
            "Department of Mathematics and Statistics, Southern Illinois University Edwardsville, 62026-1653, Edwardsville, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weygandt", 
        "givenName": "Alexander", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00006-008-0116-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027228484", 
          "https://doi.org/10.1007/s00006-008-0116-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00006-008-0116-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027228484", 
          "https://doi.org/10.1007/s00006-008-0116-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00006-016-0732-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034086571", 
          "https://doi.org/10.1007/s00006-016-0732-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00006-016-0732-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034086571", 
          "https://doi.org/10.1007/s00006-016-0732-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/130906684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062870385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/p843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099037689"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03", 
    "datePublishedReg": "2018-03-01", 
    "description": "Algebraic properties of zeons are considered, including the existence of elementary factorizations and homogeneous factorizations of invertible zeons. A \u201czeon division algorithm\u201d is established, showing that every nontrivial invertible zeon can be written as a sum of homogeneously decomposable zeons. Elementary functions (exponential, logarithmic, hyperbolic, and trigonometric) are extended to zeons, and a number of properties and identities are revealed. Finally, fast computation of logarithms is discussed for homogeneously decomposable zeons.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/s00006-018-0836-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136750", 
        "issn": [
          "0188-7009", 
          "1661-4909"
        ], 
        "name": "Advances in Applied Clifford Algebras", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Elementary Functions and Factorizations of Zeons", 
    "pagination": "12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b92d07ecce30add78bc1e079b819d9435df705532e450f9398d280f4772d7fde"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00006-018-0836-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100823037"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00006-018-0836-0", 
      "https://app.dimensions.ai/details/publication/pub.1100823037"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00006-018-0836-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00006-018-0836-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00006-018-0836-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00006-018-0836-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00006-018-0836-0'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00006-018-0836-0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N88afb4baa10841db803f68653928fec7
4 schema:citation sg:pub.10.1007/s00006-008-0116-5
5 sg:pub.10.1007/s00006-016-0732-4
6 https://doi.org/10.1137/130906684
7 https://doi.org/10.1142/p843
8 schema:datePublished 2018-03
9 schema:datePublishedReg 2018-03-01
10 schema:description Algebraic properties of zeons are considered, including the existence of elementary factorizations and homogeneous factorizations of invertible zeons. A “zeon division algorithm” is established, showing that every nontrivial invertible zeon can be written as a sum of homogeneously decomposable zeons. Elementary functions (exponential, logarithmic, hyperbolic, and trigonometric) are extended to zeons, and a number of properties and identities are revealed. Finally, fast computation of logarithms is discussed for homogeneously decomposable zeons.
11 schema:genre non_research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N1ee495d6070d435e9838cff2cfaef736
15 N5437bc7958c64427adc0c5ba3a0afe93
16 sg:journal.1136750
17 schema:name Elementary Functions and Factorizations of Zeons
18 schema:pagination 12
19 schema:productId N1f062098d3f24407a7914f982f8c4a46
20 N4de0f4366a244b7fbd962cebeec7e23d
21 N84892166ffcc4b6c8be2ebec10744a37
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100823037
23 https://doi.org/10.1007/s00006-018-0836-0
24 schema:sdDatePublished 2019-04-10T22:28
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N72157b80b24a44d3be1bc210e8ed1fd8
27 schema:url http://link.springer.com/10.1007/s00006-018-0836-0
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N1ee495d6070d435e9838cff2cfaef736 schema:volumeNumber 28
32 rdf:type schema:PublicationVolume
33 N1f062098d3f24407a7914f982f8c4a46 schema:name dimensions_id
34 schema:value pub.1100823037
35 rdf:type schema:PropertyValue
36 N2ec7c3c2d7744b038e6737cf10cfa629 rdf:first N8092e23362e04300bf1b0d0451e8d65c
37 rdf:rest rdf:nil
38 N4de0f4366a244b7fbd962cebeec7e23d schema:name readcube_id
39 schema:value b92d07ecce30add78bc1e079b819d9435df705532e450f9398d280f4772d7fde
40 rdf:type schema:PropertyValue
41 N5437bc7958c64427adc0c5ba3a0afe93 schema:issueNumber 1
42 rdf:type schema:PublicationIssue
43 N72157b80b24a44d3be1bc210e8ed1fd8 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N8092e23362e04300bf1b0d0451e8d65c schema:affiliation https://www.grid.ac/institutes/grid.263857.d
46 schema:familyName Weygandt
47 schema:givenName Alexander
48 rdf:type schema:Person
49 N84892166ffcc4b6c8be2ebec10744a37 schema:name doi
50 schema:value 10.1007/s00006-018-0836-0
51 rdf:type schema:PropertyValue
52 N88afb4baa10841db803f68653928fec7 rdf:first sg:person.013015301341.40
53 rdf:rest N2ec7c3c2d7744b038e6737cf10cfa629
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
58 schema:name Pure Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1136750 schema:issn 0188-7009
61 1661-4909
62 schema:name Advances in Applied Clifford Algebras
63 rdf:type schema:Periodical
64 sg:person.013015301341.40 schema:affiliation https://www.grid.ac/institutes/grid.263857.d
65 schema:familyName Staples
66 schema:givenName G. Stacey
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015301341.40
68 rdf:type schema:Person
69 sg:pub.10.1007/s00006-008-0116-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027228484
70 https://doi.org/10.1007/s00006-008-0116-5
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/s00006-016-0732-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034086571
73 https://doi.org/10.1007/s00006-016-0732-4
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1137/130906684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062870385
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1142/p843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099037689
78 rdf:type schema:CreativeWork
79 https://www.grid.ac/institutes/grid.263857.d schema:alternateName Southern Illinois University Edwardsville
80 schema:name Department of Mathematics and Statistics, Southern Illinois University Edwardsville, 62026-1653, Edwardsville, IL, USA
81 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...