Zeon Roots View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06

AUTHORS

Lisa M. Dollar, G. Stacey Staples

ABSTRACT

Zeon algebras can be thought of as commutative analogues of fermion algebras, and they can be constructed as subalgebras within Clifford algebras of appropriate signature. Their inherent combinatorial properties make them useful for applications in graph enumeration problems and evaluating functions defined on partitions. In this paper, kth roots of invertible zeon elements are considered. More specifically, conditions for existence of roots are established, numbers of existing roots are determined, and computational methods for constructing roots are developed. Recursive and closed formulas are presented, and specific low-dimensional examples are computed with Mathematica. Interestingly, Stirling numbers of the first kind appear among coefficients in the closed formulas. More... »

PAGES

1133-1145

References to SciGraph publications

  • 2008-09. A New Adjacency Matrix for Finite Graphs in ADVANCES IN APPLIED CLIFFORD ALGEBRAS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00006-016-0732-4

    DOI

    http://dx.doi.org/10.1007/s00006-016-0732-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034086571


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Southern Illinois University Edwardsville", 
              "id": "https://www.grid.ac/institutes/grid.263857.d", 
              "name": [
                "Department of Mathematics and Statistics, Southern Illinois University Edwardsville, 62026-1653, Edwardsville, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dollar", 
            "givenName": "Lisa M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southern Illinois University Edwardsville", 
              "id": "https://www.grid.ac/institutes/grid.263857.d", 
              "name": [
                "Department of Mathematics and Statistics, Southern Illinois University Edwardsville, 62026-1653, Edwardsville, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Staples", 
            "givenName": "G. Stacey", 
            "id": "sg:person.013015301341.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015301341.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ejc.2007.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026582388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00006-008-0116-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027228484", 
              "https://doi.org/10.1007/s00006-008-0116-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00006-008-0116-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027228484", 
              "https://doi.org/10.1007/s00006-008-0116-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2011/539030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034229013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/130906684", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062870385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/p843", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099037689"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-06", 
        "datePublishedReg": "2017-06-01", 
        "description": "Zeon algebras can be thought of as commutative analogues of fermion algebras, and they can be constructed as subalgebras within Clifford algebras of appropriate signature. Their inherent combinatorial properties make them useful for applications in graph enumeration problems and evaluating functions defined on partitions. In this paper, kth roots of invertible zeon elements are considered. More specifically, conditions for existence of roots are established, numbers of existing roots are determined, and computational methods for constructing roots are developed. Recursive and closed formulas are presented, and specific low-dimensional examples are computed with Mathematica. Interestingly, Stirling numbers of the first kind appear among coefficients in the closed formulas.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00006-016-0732-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136750", 
            "issn": [
              "0188-7009", 
              "1661-4909"
            ], 
            "name": "Advances in Applied Clifford Algebras", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "27"
          }
        ], 
        "name": "Zeon Roots", 
        "pagination": "1133-1145", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a260f8476c4b581c3b3d227ff6a2a4747b7d13531462d55e6147011068451fc8"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00006-016-0732-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034086571"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00006-016-0732-4", 
          "https://app.dimensions.ai/details/publication/pub.1034086571"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70032_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00006-016-0732-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00006-016-0732-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00006-016-0732-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00006-016-0732-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00006-016-0732-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    83 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00006-016-0732-4 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N618fa64d9ce345e8a2b1d7f26e708f9b
    4 schema:citation sg:pub.10.1007/s00006-008-0116-5
    5 https://doi.org/10.1016/j.ejc.2007.07.003
    6 https://doi.org/10.1137/130906684
    7 https://doi.org/10.1142/p843
    8 https://doi.org/10.1155/2011/539030
    9 schema:datePublished 2017-06
    10 schema:datePublishedReg 2017-06-01
    11 schema:description Zeon algebras can be thought of as commutative analogues of fermion algebras, and they can be constructed as subalgebras within Clifford algebras of appropriate signature. Their inherent combinatorial properties make them useful for applications in graph enumeration problems and evaluating functions defined on partitions. In this paper, kth roots of invertible zeon elements are considered. More specifically, conditions for existence of roots are established, numbers of existing roots are determined, and computational methods for constructing roots are developed. Recursive and closed formulas are presented, and specific low-dimensional examples are computed with Mathematica. Interestingly, Stirling numbers of the first kind appear among coefficients in the closed formulas.
    12 schema:genre research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N08d165d1e14a4952bfd12217064e0f80
    16 Ne74be29202df40c384e42ff3c8860599
    17 sg:journal.1136750
    18 schema:name Zeon Roots
    19 schema:pagination 1133-1145
    20 schema:productId N3220164314ef42a0986b9521b244c011
    21 N3f26779bdf314fd5960da68f6df39b06
    22 Nff3b28cf60f54e73a038582118f2fcac
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034086571
    24 https://doi.org/10.1007/s00006-016-0732-4
    25 schema:sdDatePublished 2019-04-11T12:37
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N881465b0b5c045dc9540be0ed5dba297
    28 schema:url https://link.springer.com/10.1007%2Fs00006-016-0732-4
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N08d165d1e14a4952bfd12217064e0f80 schema:volumeNumber 27
    33 rdf:type schema:PublicationVolume
    34 N3220164314ef42a0986b9521b244c011 schema:name doi
    35 schema:value 10.1007/s00006-016-0732-4
    36 rdf:type schema:PropertyValue
    37 N3f26779bdf314fd5960da68f6df39b06 schema:name dimensions_id
    38 schema:value pub.1034086571
    39 rdf:type schema:PropertyValue
    40 N618fa64d9ce345e8a2b1d7f26e708f9b rdf:first Ncd34896bd5bf4abb923188acdccf0bda
    41 rdf:rest N8cd9497a104a4c128e10b9867cba9f9b
    42 N881465b0b5c045dc9540be0ed5dba297 schema:name Springer Nature - SN SciGraph project
    43 rdf:type schema:Organization
    44 N8cd9497a104a4c128e10b9867cba9f9b rdf:first sg:person.013015301341.40
    45 rdf:rest rdf:nil
    46 Ncd34896bd5bf4abb923188acdccf0bda schema:affiliation https://www.grid.ac/institutes/grid.263857.d
    47 schema:familyName Dollar
    48 schema:givenName Lisa M.
    49 rdf:type schema:Person
    50 Ne74be29202df40c384e42ff3c8860599 schema:issueNumber 2
    51 rdf:type schema:PublicationIssue
    52 Nff3b28cf60f54e73a038582118f2fcac schema:name readcube_id
    53 schema:value a260f8476c4b581c3b3d227ff6a2a4747b7d13531462d55e6147011068451fc8
    54 rdf:type schema:PropertyValue
    55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Mathematical Sciences
    57 rdf:type schema:DefinedTerm
    58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Pure Mathematics
    60 rdf:type schema:DefinedTerm
    61 sg:journal.1136750 schema:issn 0188-7009
    62 1661-4909
    63 schema:name Advances in Applied Clifford Algebras
    64 rdf:type schema:Periodical
    65 sg:person.013015301341.40 schema:affiliation https://www.grid.ac/institutes/grid.263857.d
    66 schema:familyName Staples
    67 schema:givenName G. Stacey
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015301341.40
    69 rdf:type schema:Person
    70 sg:pub.10.1007/s00006-008-0116-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027228484
    71 https://doi.org/10.1007/s00006-008-0116-5
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.1016/j.ejc.2007.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026582388
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1137/130906684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062870385
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1142/p843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099037689
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1155/2011/539030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034229013
    80 rdf:type schema:CreativeWork
    81 https://www.grid.ac/institutes/grid.263857.d schema:alternateName Southern Illinois University Edwardsville
    82 schema:name Department of Mathematics and Statistics, Southern Illinois University Edwardsville, 62026-1653, Edwardsville, IL, USA
    83 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...