Quaternion Fourier Transform on Quaternion Fields and Generalizations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-08

AUTHORS

Eckhard M. S. Hitzer

ABSTRACT

We treat the quaternionic Fourier transform (QFT) applied to quaternion fields and investigate QFT properties useful for applications. Different forms of the QFT lead us to different Plancherel theorems. We relate the QFT computation for quaternion fields to the QFT of real signals. We research the general linear (GL) transformation behavior of the QFT with matrices, Clifford geometric algebra and with examples. We finally arrive at wide-ranging non-commutative multivector FT generalizations of the QFT. Examples given are new volume-time and spacetime algebra Fourier transformations. More... »

PAGES

497-517

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00006-007-0037-8

DOI

http://dx.doi.org/10.1007/s00006-007-0037-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013852999


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Department of Applied Physics, University of Fukui, 3-9-1 Bunkyo, 910-8507, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hitzer", 
        "givenName": "Eckhard M. S.", 
        "id": "sg:person.014572206207.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014572206207.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/zamm.19650450727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016056710"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-08", 
    "datePublishedReg": "2007-08-01", 
    "description": "We treat the quaternionic Fourier transform (QFT) applied to quaternion fields and investigate QFT properties useful for applications. Different forms of the QFT lead us to different Plancherel theorems. We relate the QFT computation for quaternion fields to the QFT of real signals. We research the general linear (GL) transformation behavior of the QFT with matrices, Clifford geometric algebra and with examples. We finally arrive at wide-ranging non-commutative multivector FT generalizations of the QFT. Examples given are new volume-time and spacetime algebra Fourier transformations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00006-007-0037-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136750", 
        "issn": [
          "0188-7009", 
          "1661-4909"
        ], 
        "name": "Advances in Applied Clifford Algebras", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Quaternion Fourier Transform on Quaternion Fields and Generalizations", 
    "pagination": "497-517", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "41fe2b1dc188eacf7cbfe1a3f5cbb00f3fd57aefc57beade07cef0d53a95e46f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00006-007-0037-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013852999"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00006-007-0037-8", 
      "https://app.dimensions.ai/details/publication/pub.1013852999"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99824_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00006-007-0037-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00006-007-0037-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00006-007-0037-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00006-007-0037-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00006-007-0037-8'


 

This table displays all metadata directly associated to this object as RDF triples.

64 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00006-007-0037-8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Na0c53b08ae42435d98def2e025b69684
4 schema:citation https://doi.org/10.1002/zamm.19650450727
5 schema:datePublished 2007-08
6 schema:datePublishedReg 2007-08-01
7 schema:description We treat the quaternionic Fourier transform (QFT) applied to quaternion fields and investigate QFT properties useful for applications. Different forms of the QFT lead us to different Plancherel theorems. We relate the QFT computation for quaternion fields to the QFT of real signals. We research the general linear (GL) transformation behavior of the QFT with matrices, Clifford geometric algebra and with examples. We finally arrive at wide-ranging non-commutative multivector FT generalizations of the QFT. Examples given are new volume-time and spacetime algebra Fourier transformations.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N1dd935690c0b4002891a2fbb307a208f
12 N784de9f26c424d8685e32533260aedf8
13 sg:journal.1136750
14 schema:name Quaternion Fourier Transform on Quaternion Fields and Generalizations
15 schema:pagination 497-517
16 schema:productId N4110d83bb84243229cdcd034376d6388
17 N473ade60b2a84ca2b3bd42633e924b49
18 N7415b7ac38df4b1dabdecaea37dcdf6d
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013852999
20 https://doi.org/10.1007/s00006-007-0037-8
21 schema:sdDatePublished 2019-04-11T09:36
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N41b96654787a4138b2527a0536cfcd34
24 schema:url https://link.springer.com/10.1007%2Fs00006-007-0037-8
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N1dd935690c0b4002891a2fbb307a208f schema:volumeNumber 17
29 rdf:type schema:PublicationVolume
30 N4110d83bb84243229cdcd034376d6388 schema:name doi
31 schema:value 10.1007/s00006-007-0037-8
32 rdf:type schema:PropertyValue
33 N41b96654787a4138b2527a0536cfcd34 schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N473ade60b2a84ca2b3bd42633e924b49 schema:name dimensions_id
36 schema:value pub.1013852999
37 rdf:type schema:PropertyValue
38 N7415b7ac38df4b1dabdecaea37dcdf6d schema:name readcube_id
39 schema:value 41fe2b1dc188eacf7cbfe1a3f5cbb00f3fd57aefc57beade07cef0d53a95e46f
40 rdf:type schema:PropertyValue
41 N784de9f26c424d8685e32533260aedf8 schema:issueNumber 3
42 rdf:type schema:PublicationIssue
43 Na0c53b08ae42435d98def2e025b69684 rdf:first sg:person.014572206207.19
44 rdf:rest rdf:nil
45 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
46 schema:name Mathematical Sciences
47 rdf:type schema:DefinedTerm
48 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
49 schema:name Pure Mathematics
50 rdf:type schema:DefinedTerm
51 sg:journal.1136750 schema:issn 0188-7009
52 1661-4909
53 schema:name Advances in Applied Clifford Algebras
54 rdf:type schema:Periodical
55 sg:person.014572206207.19 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
56 schema:familyName Hitzer
57 schema:givenName Eckhard M. S.
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014572206207.19
59 rdf:type schema:Person
60 https://doi.org/10.1002/zamm.19650450727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016056710
61 rdf:type schema:CreativeWork
62 https://www.grid.ac/institutes/grid.163577.1 schema:alternateName University of Fukui
63 schema:name Department of Applied Physics, University of Fukui, 3-9-1 Bunkyo, 910-8507, Fukui, Japan
64 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...