Quaternion Fourier Transform on Quaternion Fields and Generalizations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-08

AUTHORS

Eckhard M. S. Hitzer

ABSTRACT

We treat the quaternionic Fourier transform (QFT) applied to quaternion fields and investigate QFT properties useful for applications. Different forms of the QFT lead us to different Plancherel theorems. We relate the QFT computation for quaternion fields to the QFT of real signals. We research the general linear (GL) transformation behavior of the QFT with matrices, Clifford geometric algebra and with examples. We finally arrive at wide-ranging non-commutative multivector FT generalizations of the QFT. Examples given are new volume-time and spacetime algebra Fourier transformations. More... »

PAGES

497-517

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00006-007-0037-8

DOI

http://dx.doi.org/10.1007/s00006-007-0037-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013852999


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Department of Applied Physics, University of Fukui, 3-9-1 Bunkyo, 910-8507, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hitzer", 
        "givenName": "Eckhard M. S.", 
        "id": "sg:person.014572206207.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014572206207.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/zamm.19650450727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016056710"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-08", 
    "datePublishedReg": "2007-08-01", 
    "description": "We treat the quaternionic Fourier transform (QFT) applied to quaternion fields and investigate QFT properties useful for applications. Different forms of the QFT lead us to different Plancherel theorems. We relate the QFT computation for quaternion fields to the QFT of real signals. We research the general linear (GL) transformation behavior of the QFT with matrices, Clifford geometric algebra and with examples. We finally arrive at wide-ranging non-commutative multivector FT generalizations of the QFT. Examples given are new volume-time and spacetime algebra Fourier transformations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00006-007-0037-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136750", 
        "issn": [
          "0188-7009", 
          "1661-4909"
        ], 
        "name": "Advances in Applied Clifford Algebras", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Quaternion Fourier Transform on Quaternion Fields and Generalizations", 
    "pagination": "497-517", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "41fe2b1dc188eacf7cbfe1a3f5cbb00f3fd57aefc57beade07cef0d53a95e46f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00006-007-0037-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013852999"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00006-007-0037-8", 
      "https://app.dimensions.ai/details/publication/pub.1013852999"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99824_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00006-007-0037-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00006-007-0037-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00006-007-0037-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00006-007-0037-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00006-007-0037-8'


 

This table displays all metadata directly associated to this object as RDF triples.

64 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00006-007-0037-8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbeabe521a4ed406480311429db9945a8
4 schema:citation https://doi.org/10.1002/zamm.19650450727
5 schema:datePublished 2007-08
6 schema:datePublishedReg 2007-08-01
7 schema:description We treat the quaternionic Fourier transform (QFT) applied to quaternion fields and investigate QFT properties useful for applications. Different forms of the QFT lead us to different Plancherel theorems. We relate the QFT computation for quaternion fields to the QFT of real signals. We research the general linear (GL) transformation behavior of the QFT with matrices, Clifford geometric algebra and with examples. We finally arrive at wide-ranging non-commutative multivector FT generalizations of the QFT. Examples given are new volume-time and spacetime algebra Fourier transformations.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nb2ccdc853f55498ba2e95b08e350daa9
12 Ne9b458034e9f4b3abed704935e4de16f
13 sg:journal.1136750
14 schema:name Quaternion Fourier Transform on Quaternion Fields and Generalizations
15 schema:pagination 497-517
16 schema:productId N00a635b8ce7a440ab1853b240c1f68f2
17 N0839bc46535b492e829bc222d9eccd6a
18 Ne7ddefa2b4ff4fdf861ed29a50a56abf
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013852999
20 https://doi.org/10.1007/s00006-007-0037-8
21 schema:sdDatePublished 2019-04-11T09:36
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N3c52260832c44b2493d7455e442a9790
24 schema:url https://link.springer.com/10.1007%2Fs00006-007-0037-8
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N00a635b8ce7a440ab1853b240c1f68f2 schema:name readcube_id
29 schema:value 41fe2b1dc188eacf7cbfe1a3f5cbb00f3fd57aefc57beade07cef0d53a95e46f
30 rdf:type schema:PropertyValue
31 N0839bc46535b492e829bc222d9eccd6a schema:name dimensions_id
32 schema:value pub.1013852999
33 rdf:type schema:PropertyValue
34 N3c52260832c44b2493d7455e442a9790 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 Nb2ccdc853f55498ba2e95b08e350daa9 schema:issueNumber 3
37 rdf:type schema:PublicationIssue
38 Nbeabe521a4ed406480311429db9945a8 rdf:first sg:person.014572206207.19
39 rdf:rest rdf:nil
40 Ne7ddefa2b4ff4fdf861ed29a50a56abf schema:name doi
41 schema:value 10.1007/s00006-007-0037-8
42 rdf:type schema:PropertyValue
43 Ne9b458034e9f4b3abed704935e4de16f schema:volumeNumber 17
44 rdf:type schema:PublicationVolume
45 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
46 schema:name Mathematical Sciences
47 rdf:type schema:DefinedTerm
48 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
49 schema:name Pure Mathematics
50 rdf:type schema:DefinedTerm
51 sg:journal.1136750 schema:issn 0188-7009
52 1661-4909
53 schema:name Advances in Applied Clifford Algebras
54 rdf:type schema:Periodical
55 sg:person.014572206207.19 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
56 schema:familyName Hitzer
57 schema:givenName Eckhard M. S.
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014572206207.19
59 rdf:type schema:Person
60 https://doi.org/10.1002/zamm.19650450727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016056710
61 rdf:type schema:CreativeWork
62 https://www.grid.ac/institutes/grid.163577.1 schema:alternateName University of Fukui
63 schema:name Department of Applied Physics, University of Fukui, 3-9-1 Bunkyo, 910-8507, Fukui, Japan
64 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...