Effect of grinding on thermal properties of wheat grain View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-30

AUTHORS

Ewa Ropelewska

ABSTRACT

The aim of this study was to compare the thermal conductivity, thermal resistivity, volumetric heat capacity and thermal diffusivity of whole and ground wheat grain. The bulk density of whole grain ranged from 0.758 to 0.828 g cm−1 (mean 0.806 g cm−1), gappiness ranged from 37.7 to 40.2% (mean 38.5%), length ranged from 5.99 to 7.23 mm (mean 6.54 mm) and width ranged from 3.32 to 3.89 mm (mean 3.53 mm). In whole grain, the thermal conductivity (0.125–0.174 W m−1 K−1), volumetric heat capacity (1.366–1.767 MJ m−3 K−1), thermal resistivity (6.058–7.893 m K W−1), and thermal diffusivity (0.091–0.101 mm2 s−1) differed significantly from the ground wheat grain (size of 0.2 mm) characterised by the thermal conductivity that ranged from 0.096 to 0.119 W m−1 K−1, volumetric heat capacity ranged from 0.992 to 1.179 MJ m−3 K−1, thermal resistivity ranged from 8.411 to 10.501 m K W−1, and thermal diffusivity 0.093 to 0.105 mm2 s−1, respectively. More... »

PAGES

1-8

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00003-018-1200-y

DOI

http://dx.doi.org/10.1007/s00003-018-1200-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110284339


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Warmia and Mazury in Olsztyn", 
          "id": "https://www.grid.ac/institutes/grid.412607.6", 
          "name": [
            "Department of Systems Engineering, Faculty of Engineering, University of Warmia and Mazury in Olsztyn, Heweliusza 14, 10-718, Olsztyn, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ropelewska", 
        "givenName": "Ewa", 
        "id": "sg:person.014613417717.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014613417717.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1079/nrr200374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000005218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fbp.2016.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003523905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/ata-2015-0002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007548040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystemseng.2012.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010202602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10942912.2011.628430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012242231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0189-7241(15)30042-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016005095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/antiox2040370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022842119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bcab.2016.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029893339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcs.2016.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038540661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2008.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042334862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-30808-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046766596", 
          "https://doi.org/10.1007/0-387-30808-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-30808-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046766596", 
          "https://doi.org/10.1007/0-387-30808-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2016.08.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049263060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1537-5110(02)00222-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049866050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13031/2013.30335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064896631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.9790/3021-031152935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074178853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lwt.2017.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090614190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcs.2017.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093055195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17221/4967-rae", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100966789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13080/z-a.2018.105.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106028653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.29081/jesr.v19i2.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107936766"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-30", 
    "datePublishedReg": "2018-11-30", 
    "description": "The aim of this study was to compare the thermal conductivity, thermal resistivity, volumetric heat capacity and thermal diffusivity of whole and ground wheat grain. The bulk density of whole grain ranged from 0.758 to 0.828 g cm\u22121 (mean 0.806 g cm\u22121), gappiness ranged from 37.7 to 40.2% (mean 38.5%), length ranged from 5.99 to 7.23 mm (mean 6.54 mm) and width ranged from 3.32 to 3.89 mm (mean 3.53 mm). In whole grain, the thermal conductivity (0.125\u20130.174 W m\u22121 K\u22121), volumetric heat capacity (1.366\u20131.767 MJ m\u22123 K\u22121), thermal resistivity (6.058\u20137.893 m K W\u22121), and thermal diffusivity (0.091\u20130.101 mm2 s\u22121) differed significantly from the ground wheat grain (size of 0.2 mm) characterised by the thermal conductivity that ranged from 0.096 to 0.119 W m\u22121 K\u22121, volumetric heat capacity ranged from 0.992 to 1.179 MJ m\u22123 K\u22121, thermal resistivity ranged from 8.411 to 10.501 m K W\u22121, and thermal diffusivity 0.093 to 0.105 mm2 s\u22121, respectively.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00003-018-1200-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5062587", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4706876", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1046984", 
        "issn": [
          "1661-5751", 
          "1661-5867"
        ], 
        "name": "Journal of Consumer Protection and Food Safety", 
        "type": "Periodical"
      }
    ], 
    "name": "Effect of grinding on thermal properties of wheat grain", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b0b437dfa11ca7a5c6b64577615bd5282594c82e8dea4266e198e5ba610262c6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00003-018-1200-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110284339"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00003-018-1200-y", 
      "https://app.dimensions.ai/details/publication/pub.1110284339"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000278_0000000278/records_79612_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00003-018-1200-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00003-018-1200-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00003-018-1200-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00003-018-1200-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00003-018-1200-y'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      21 PREDICATES      44 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00003-018-1200-y schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nef00ab3eeb8740488c268df16b502ff2
4 schema:citation sg:pub.10.1007/0-387-30808-3
5 https://doi.org/10.1016/j.bcab.2016.11.005
6 https://doi.org/10.1016/j.biosystemseng.2012.09.013
7 https://doi.org/10.1016/j.cmpb.2008.08.005
8 https://doi.org/10.1016/j.fbp.2016.04.007
9 https://doi.org/10.1016/j.foodchem.2016.08.062
10 https://doi.org/10.1016/j.jcs.2016.11.012
11 https://doi.org/10.1016/j.jcs.2017.11.018
12 https://doi.org/10.1016/j.lwt.2017.07.016
13 https://doi.org/10.1016/s0189-7241(15)30042-4
14 https://doi.org/10.1016/s1537-5110(02)00222-2
15 https://doi.org/10.1079/nrr200374
16 https://doi.org/10.1080/10942912.2011.628430
17 https://doi.org/10.13031/2013.30335
18 https://doi.org/10.13080/z-a.2018.105.033
19 https://doi.org/10.1515/ata-2015-0002
20 https://doi.org/10.17221/4967-rae
21 https://doi.org/10.29081/jesr.v19i2.131
22 https://doi.org/10.3390/antiox2040370
23 https://doi.org/10.9790/3021-031152935
24 schema:datePublished 2018-11-30
25 schema:datePublishedReg 2018-11-30
26 schema:description The aim of this study was to compare the thermal conductivity, thermal resistivity, volumetric heat capacity and thermal diffusivity of whole and ground wheat grain. The bulk density of whole grain ranged from 0.758 to 0.828 g cm−1 (mean 0.806 g cm−1), gappiness ranged from 37.7 to 40.2% (mean 38.5%), length ranged from 5.99 to 7.23 mm (mean 6.54 mm) and width ranged from 3.32 to 3.89 mm (mean 3.53 mm). In whole grain, the thermal conductivity (0.125–0.174 W m−1 K−1), volumetric heat capacity (1.366–1.767 MJ m−3 K−1), thermal resistivity (6.058–7.893 m K W−1), and thermal diffusivity (0.091–0.101 mm2 s−1) differed significantly from the ground wheat grain (size of 0.2 mm) characterised by the thermal conductivity that ranged from 0.096 to 0.119 W m−1 K−1, volumetric heat capacity ranged from 0.992 to 1.179 MJ m−3 K−1, thermal resistivity ranged from 8.411 to 10.501 m K W−1, and thermal diffusivity 0.093 to 0.105 mm2 s−1, respectively.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf sg:journal.1046984
31 schema:name Effect of grinding on thermal properties of wheat grain
32 schema:pagination 1-8
33 schema:productId N5acb567bcccb4f97a48c4d63ea738cdf
34 N5ad0f7d0cf1947e6990ecaeb82168d16
35 Na3180b3b0a5640929b7ec66085f81d9c
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110284339
37 https://doi.org/10.1007/s00003-018-1200-y
38 schema:sdDatePublished 2019-04-11T08:15
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nb06fa7db178841b280900e543b59eafd
41 schema:url https://link.springer.com/10.1007%2Fs00003-018-1200-y
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N5acb567bcccb4f97a48c4d63ea738cdf schema:name dimensions_id
46 schema:value pub.1110284339
47 rdf:type schema:PropertyValue
48 N5ad0f7d0cf1947e6990ecaeb82168d16 schema:name doi
49 schema:value 10.1007/s00003-018-1200-y
50 rdf:type schema:PropertyValue
51 Na3180b3b0a5640929b7ec66085f81d9c schema:name readcube_id
52 schema:value b0b437dfa11ca7a5c6b64577615bd5282594c82e8dea4266e198e5ba610262c6
53 rdf:type schema:PropertyValue
54 Nb06fa7db178841b280900e543b59eafd schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Nef00ab3eeb8740488c268df16b502ff2 rdf:first sg:person.014613417717.11
57 rdf:rest rdf:nil
58 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
59 schema:name Engineering
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
62 schema:name Interdisciplinary Engineering
63 rdf:type schema:DefinedTerm
64 sg:grant.4706876 http://pending.schema.org/fundedItem sg:pub.10.1007/s00003-018-1200-y
65 rdf:type schema:MonetaryGrant
66 sg:grant.5062587 http://pending.schema.org/fundedItem sg:pub.10.1007/s00003-018-1200-y
67 rdf:type schema:MonetaryGrant
68 sg:journal.1046984 schema:issn 1661-5751
69 1661-5867
70 schema:name Journal of Consumer Protection and Food Safety
71 rdf:type schema:Periodical
72 sg:person.014613417717.11 schema:affiliation https://www.grid.ac/institutes/grid.412607.6
73 schema:familyName Ropelewska
74 schema:givenName Ewa
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014613417717.11
76 rdf:type schema:Person
77 sg:pub.10.1007/0-387-30808-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046766596
78 https://doi.org/10.1007/0-387-30808-3
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/j.bcab.2016.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029893339
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/j.biosystemseng.2012.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010202602
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/j.cmpb.2008.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042334862
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/j.fbp.2016.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003523905
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/j.foodchem.2016.08.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049263060
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.jcs.2016.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038540661
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.jcs.2017.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093055195
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.lwt.2017.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090614190
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/s0189-7241(15)30042-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016005095
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/s1537-5110(02)00222-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049866050
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1079/nrr200374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000005218
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1080/10942912.2011.628430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012242231
103 rdf:type schema:CreativeWork
104 https://doi.org/10.13031/2013.30335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064896631
105 rdf:type schema:CreativeWork
106 https://doi.org/10.13080/z-a.2018.105.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106028653
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1515/ata-2015-0002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007548040
109 rdf:type schema:CreativeWork
110 https://doi.org/10.17221/4967-rae schema:sameAs https://app.dimensions.ai/details/publication/pub.1100966789
111 rdf:type schema:CreativeWork
112 https://doi.org/10.29081/jesr.v19i2.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107936766
113 rdf:type schema:CreativeWork
114 https://doi.org/10.3390/antiox2040370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022842119
115 rdf:type schema:CreativeWork
116 https://doi.org/10.9790/3021-031152935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074178853
117 rdf:type schema:CreativeWork
118 https://www.grid.ac/institutes/grid.412607.6 schema:alternateName University of Warmia and Mazury in Olsztyn
119 schema:name Department of Systems Engineering, Faculty of Engineering, University of Warmia and Mazury in Olsztyn, Heweliusza 14, 10-718, Olsztyn, Poland
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...