Efficient estimation of interlaboratory and in-house reproducibility standard deviation in factorial validation studies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

Steffen Uhlig, Petra Gowik

ABSTRACT

In case that fewer laboratories are available than required in order to ensure reliable precision estimates, the method validation study approach that is put forward in ISO 5725-2 is not applicable. Nested designs (as described in ISO 5725-3) can represent an alternative approach, yet they present important drawbacks, too: For example, a large number of measurements must be carried out and the available number of factor levels may be insufficient. An alternative approach consists in implementing orthogonal factorial designs. Both, the number of required laboratories and the number of required measurements inside each laboratory are considerably reduced. Moreover, the breakdown of the variability into component factor variances allows a differentiated and efficient estimation of the precision data. More... »

PAGES

315-322

References to SciGraph publications

  • 2010-02. Faktorielle Ringversuche zur Validierung mikrobiologischer Methoden in JOURNAL OF CONSUMER PROTECTION AND FOOD SAFETY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00003-018-1157-x

    DOI

    http://dx.doi.org/10.1007/s00003-018-1157-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1101391133


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "QuoData GmbH, Prellerstr. 14, 01309, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Uhlig", 
            "givenName": "Steffen", 
            "id": "sg:person.01106453251.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106453251.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Federal Office of Consumer Protection and Food Safety", 
              "id": "https://www.grid.ac/institutes/grid.469880.b", 
              "name": [
                "Federal Office of Consumer Protection and Food Safety, Mauerstr. 3942, 10117, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gowik", 
            "givenName": "Petra", 
            "id": "sg:person.01340063021.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340063021.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00003-009-0524-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027207737", 
              "https://doi.org/10.1007/s00003-009-0524-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00003-009-0524-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027207737", 
              "https://doi.org/10.1007/s00003-009-0524-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/a707281c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035569349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5740/jaoacint.11-365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053077818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077984791", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9781118491621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106880723"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-09", 
        "datePublishedReg": "2018-09-01", 
        "description": "In case that fewer laboratories are available than required in order to ensure reliable precision estimates, the method validation study approach that is put forward in ISO 5725-2 is not applicable. Nested designs (as described in ISO 5725-3) can represent an alternative approach, yet they present important drawbacks, too: For example, a large number of measurements must be carried out and the available number of factor levels may be insufficient. An alternative approach consists in implementing orthogonal factorial designs. Both, the number of required laboratories and the number of required measurements inside each laboratory are considerably reduced. Moreover, the breakdown of the variability into component factor variances allows a differentiated and efficient estimation of the precision data.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00003-018-1157-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1046984", 
            "issn": [
              "1661-5751", 
              "1661-5867"
            ], 
            "name": "Journal of Consumer Protection and Food Safety", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "name": "Efficient estimation of interlaboratory and in-house reproducibility standard deviation in factorial validation studies", 
        "pagination": "315-322", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "eafedf74afad3f886391c9c1c7cc268ccf301a39d8f1698b2c00ae1f497332d8"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00003-018-1157-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1101391133"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00003-018-1157-x", 
          "https://app.dimensions.ai/details/publication/pub.1101391133"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11713_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00003-018-1157-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00003-018-1157-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00003-018-1157-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00003-018-1157-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00003-018-1157-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    85 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00003-018-1157-x schema:about anzsrc-for:09
    2 anzsrc-for:0906
    3 schema:author Ndef51104974a4d3da8901f0149ccf8af
    4 schema:citation sg:pub.10.1007/s00003-009-0524-z
    5 https://app.dimensions.ai/details/publication/pub.1077984791
    6 https://doi.org/10.1002/9781118491621
    7 https://doi.org/10.1039/a707281c
    8 https://doi.org/10.5740/jaoacint.11-365
    9 schema:datePublished 2018-09
    10 schema:datePublishedReg 2018-09-01
    11 schema:description In case that fewer laboratories are available than required in order to ensure reliable precision estimates, the method validation study approach that is put forward in ISO 5725-2 is not applicable. Nested designs (as described in ISO 5725-3) can represent an alternative approach, yet they present important drawbacks, too: For example, a large number of measurements must be carried out and the available number of factor levels may be insufficient. An alternative approach consists in implementing orthogonal factorial designs. Both, the number of required laboratories and the number of required measurements inside each laboratory are considerably reduced. Moreover, the breakdown of the variability into component factor variances allows a differentiated and efficient estimation of the precision data.
    12 schema:genre research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N0f9aa9c99954470fb2c500ad3654ae1c
    16 N6e3e18e19ff04409838ac48cd7d3ce25
    17 sg:journal.1046984
    18 schema:name Efficient estimation of interlaboratory and in-house reproducibility standard deviation in factorial validation studies
    19 schema:pagination 315-322
    20 schema:productId N68453c7c437c46acbae0be6194e33925
    21 N83bedde5476247c09048a8bb06fb7f24
    22 Neda35a81dd2e49a197f326d00891179a
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101391133
    24 https://doi.org/10.1007/s00003-018-1157-x
    25 schema:sdDatePublished 2019-04-11T11:19
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N8ffa9fdfdaf24963ac4e47ee12061e60
    28 schema:url https://link.springer.com/10.1007%2Fs00003-018-1157-x
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N0f9aa9c99954470fb2c500ad3654ae1c schema:issueNumber 3
    33 rdf:type schema:PublicationIssue
    34 N68453c7c437c46acbae0be6194e33925 schema:name doi
    35 schema:value 10.1007/s00003-018-1157-x
    36 rdf:type schema:PropertyValue
    37 N69745606a2b04afea5e6b7dcb14ea343 rdf:first sg:person.01340063021.43
    38 rdf:rest rdf:nil
    39 N6e3e18e19ff04409838ac48cd7d3ce25 schema:volumeNumber 13
    40 rdf:type schema:PublicationVolume
    41 N83bedde5476247c09048a8bb06fb7f24 schema:name readcube_id
    42 schema:value eafedf74afad3f886391c9c1c7cc268ccf301a39d8f1698b2c00ae1f497332d8
    43 rdf:type schema:PropertyValue
    44 N8ffa9fdfdaf24963ac4e47ee12061e60 schema:name Springer Nature - SN SciGraph project
    45 rdf:type schema:Organization
    46 Nb7fa165cecca4cff83499799d0987023 schema:name QuoData GmbH, Prellerstr. 14, 01309, Dresden, Germany
    47 rdf:type schema:Organization
    48 Ndef51104974a4d3da8901f0149ccf8af rdf:first sg:person.01106453251.26
    49 rdf:rest N69745606a2b04afea5e6b7dcb14ea343
    50 Neda35a81dd2e49a197f326d00891179a schema:name dimensions_id
    51 schema:value pub.1101391133
    52 rdf:type schema:PropertyValue
    53 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Engineering
    55 rdf:type schema:DefinedTerm
    56 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Electrical and Electronic Engineering
    58 rdf:type schema:DefinedTerm
    59 sg:journal.1046984 schema:issn 1661-5751
    60 1661-5867
    61 schema:name Journal of Consumer Protection and Food Safety
    62 rdf:type schema:Periodical
    63 sg:person.01106453251.26 schema:affiliation Nb7fa165cecca4cff83499799d0987023
    64 schema:familyName Uhlig
    65 schema:givenName Steffen
    66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106453251.26
    67 rdf:type schema:Person
    68 sg:person.01340063021.43 schema:affiliation https://www.grid.ac/institutes/grid.469880.b
    69 schema:familyName Gowik
    70 schema:givenName Petra
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340063021.43
    72 rdf:type schema:Person
    73 sg:pub.10.1007/s00003-009-0524-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027207737
    74 https://doi.org/10.1007/s00003-009-0524-z
    75 rdf:type schema:CreativeWork
    76 https://app.dimensions.ai/details/publication/pub.1077984791 schema:CreativeWork
    77 https://doi.org/10.1002/9781118491621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106880723
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1039/a707281c schema:sameAs https://app.dimensions.ai/details/publication/pub.1035569349
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.5740/jaoacint.11-365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053077818
    82 rdf:type schema:CreativeWork
    83 https://www.grid.ac/institutes/grid.469880.b schema:alternateName Federal Office of Consumer Protection and Food Safety
    84 schema:name Federal Office of Consumer Protection and Food Safety, Mauerstr. 3942, 10117, Berlin, Germany
    85 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...