Stability of Maxwellian states for the Broadwell model of the extended Boltzmann equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-07

AUTHORS

M. Miklavčič, G. Spiga

ABSTRACT

The extended Boltzmann equation for test particles in an absorbing and generating background plane medium with generalized boundary conditions is discretized according to the classical Broadwell scheme, which allows three dimensions to the molecular velocity vector. Stability of Maxwellian states to small space dependent perturbations is studied analytically and numerically, both on the whole real line and on a finite interval. Results prove, among other things, existence, for the boundary value problem, of regions of positive measure in the parameter space which yield instability, due to the presence of a positive eigenvalue. More... »

PAGES

590-601

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s000000050110

DOI

http://dx.doi.org/10.1007/s000000050110

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027727282


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Michigan State University", 
          "id": "https://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA. e-mail: milan@math.msu.edu, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miklav\u010di\u010d", 
        "givenName": "M.", 
        "id": "sg:person.011321605423.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011321605423.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Parma", 
          "id": "https://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "Department of Mathematics, University of Parma, Via M. D'Azeglio 85, 43100 Parma, Italy. e-mail: spiga@prmat.math.unipr.it, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spiga", 
        "givenName": "G.", 
        "id": "sg:person.012650736763.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012650736763.15"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998-07", 
    "datePublishedReg": "1998-07-01", 
    "description": "The extended Boltzmann equation for test particles in an absorbing and generating background plane medium with generalized boundary conditions is discretized according to the classical Broadwell scheme, which allows three dimensions to the molecular velocity vector. Stability of Maxwellian states to small space dependent perturbations is studied analytically and numerically, both on the whole real line and on a finite interval. Results prove, among other things, existence, for the boundary value problem, of regions of positive measure in the parameter space which yield instability, due to the presence of a positive eigenvalue.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s000000050110", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053636", 
        "issn": [
          "0044-2275", 
          "1420-9039"
        ], 
        "name": "Zeitschrift f\u00fcr angewandte Mathematik und Physik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "Stability of Maxwellian states for the Broadwell model of the extended Boltzmann equation", 
    "pagination": "590-601", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "841618c8d66ffcde7949b06749e240906cd488be2fb157209f16861faf3e99e9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s000000050110"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027727282"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s000000050110", 
      "https://app.dimensions.ai/details/publication/pub.1027727282"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000532.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs000000050110"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s000000050110'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s000000050110'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s000000050110'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s000000050110'


 

This table displays all metadata directly associated to this object as RDF triples.

71 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s000000050110 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N737a5fa2b80b4b368faa4432cfcadf16
4 schema:datePublished 1998-07
5 schema:datePublishedReg 1998-07-01
6 schema:description The extended Boltzmann equation for test particles in an absorbing and generating background plane medium with generalized boundary conditions is discretized according to the classical Broadwell scheme, which allows three dimensions to the molecular velocity vector. Stability of Maxwellian states to small space dependent perturbations is studied analytically and numerically, both on the whole real line and on a finite interval. Results prove, among other things, existence, for the boundary value problem, of regions of positive measure in the parameter space which yield instability, due to the presence of a positive eigenvalue.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N204ecea586d74cc4875fe656c9e2226f
11 Nf9cb6c4e93704b1382ba7ef2fb86b9e5
12 sg:journal.1053636
13 schema:name Stability of Maxwellian states for the Broadwell model of the extended Boltzmann equation
14 schema:pagination 590-601
15 schema:productId N1d33ec533d7d4517bcdeaa0c0f675a75
16 N63f96b1a21cf49209e66f4c9f8723dfe
17 Nb239b721d467462ba53485db7639c6e3
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027727282
19 https://doi.org/10.1007/s000000050110
20 schema:sdDatePublished 2019-04-10T14:14
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nb9d5670574cb4c79bfae5e3a54e87595
23 schema:url http://link.springer.com/10.1007%2Fs000000050110
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N1d33ec533d7d4517bcdeaa0c0f675a75 schema:name dimensions_id
28 schema:value pub.1027727282
29 rdf:type schema:PropertyValue
30 N204ecea586d74cc4875fe656c9e2226f schema:issueNumber 4
31 rdf:type schema:PublicationIssue
32 N3e3fda403a804dd1bcfe72a036fc2712 rdf:first sg:person.012650736763.15
33 rdf:rest rdf:nil
34 N63f96b1a21cf49209e66f4c9f8723dfe schema:name readcube_id
35 schema:value 841618c8d66ffcde7949b06749e240906cd488be2fb157209f16861faf3e99e9
36 rdf:type schema:PropertyValue
37 N737a5fa2b80b4b368faa4432cfcadf16 rdf:first sg:person.011321605423.14
38 rdf:rest N3e3fda403a804dd1bcfe72a036fc2712
39 Nb239b721d467462ba53485db7639c6e3 schema:name doi
40 schema:value 10.1007/s000000050110
41 rdf:type schema:PropertyValue
42 Nb9d5670574cb4c79bfae5e3a54e87595 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 Nf9cb6c4e93704b1382ba7ef2fb86b9e5 schema:volumeNumber 49
45 rdf:type schema:PublicationVolume
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1053636 schema:issn 0044-2275
53 1420-9039
54 schema:name Zeitschrift für angewandte Mathematik und Physik
55 rdf:type schema:Periodical
56 sg:person.011321605423.14 schema:affiliation https://www.grid.ac/institutes/grid.17088.36
57 schema:familyName Miklavčič
58 schema:givenName M.
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011321605423.14
60 rdf:type schema:Person
61 sg:person.012650736763.15 schema:affiliation https://www.grid.ac/institutes/grid.10383.39
62 schema:familyName Spiga
63 schema:givenName G.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012650736763.15
65 rdf:type schema:Person
66 https://www.grid.ac/institutes/grid.10383.39 schema:alternateName University of Parma
67 schema:name Department of Mathematics, University of Parma, Via M. D'Azeglio 85, 43100 Parma, Italy. e-mail: spiga@prmat.math.unipr.it, IT
68 rdf:type schema:Organization
69 https://www.grid.ac/institutes/grid.17088.36 schema:alternateName Michigan State University
70 schema:name Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA. e-mail: milan@math.msu.edu, US
71 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...