Electrodynamic equations for heterogeneous media and structures on the length scales of their constituents View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-01

AUTHORS

V. S. Travkin, A. T. Ponomarenko

ABSTRACT

A new theoretical approach is proposed for addressing the electrodynamics of heterogeneous media and structures, which takes into account the interrelation between physical phenomena on different length scales. Using volume averaging theory (VAT), parabolic partial differential equations containing integral or integro-differential terms are obtained for electromagnetic wave propagation in heterogeneous media. This theory allows one to accurately describe physical phenomena owing to its ability to take into account spatial scales, interfacial effects, the structural features of heterogeneous media such as high-Tc superconducting ceramics and absorbing composite materials, and heat and mass exchange in porous media. The approach is exemplified by analysis of functional structures with electrodynamic properties, in particular absorbing structures, and its conclusions are supported by experimental data. Issues pertaining to the anisotropy in the properties of composite materials and related functional structures are discussed. More... »

PAGES

s128-s144

Journal

TITLE

Inorganic Materials

ISSUE

2

VOLUME

40

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/pl00021876

DOI

http://dx.doi.org/10.1007/pl00021876

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106278810


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Hierarchical Technologies, 10431, Larwin Ave., 91311, Chatsworth, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Travkin", 
        "givenName": "V. S.", 
        "id": "sg:person.011154716503.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011154716503.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Enikopolov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Profsoyuznaya ul. 70, 117393, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ponomarenko", 
        "givenName": "A. T.", 
        "id": "sg:person.012614476122.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012614476122.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/02726349408908376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009840054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0001-8686(98)00054-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016116010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.240446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022913369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.240451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026767434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2717(01)80011-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029612461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.350133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036823552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042120164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042120164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1997.5783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043567874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.858194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058111399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.858523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058111728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/pu1971v013n05abeh004213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058169764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.10101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060546494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.10101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060546494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.2564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.2564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.1591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.1591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.1950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.1950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1413247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062069572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2816810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062084155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036139994263859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062875178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036139996297249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062875356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/jenhheattransf.v3.i2.60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068145775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/jpormedia.v2.i3.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068148844"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-01", 
    "datePublishedReg": "2004-01-01", 
    "description": "A new theoretical approach is proposed for addressing the electrodynamics of heterogeneous media and structures, which takes into account the interrelation between physical phenomena on different length scales. Using volume averaging theory (VAT), parabolic partial differential equations containing integral or integro-differential terms are obtained for electromagnetic wave propagation in heterogeneous media. This theory allows one to accurately describe physical phenomena owing to its ability to take into account spatial scales, interfacial effects, the structural features of heterogeneous media such as high-Tc superconducting ceramics and absorbing composite materials, and heat and mass exchange in porous media. The approach is exemplified by analysis of functional structures with electrodynamic properties, in particular absorbing structures, and its conclusions are supported by experimental data. Issues pertaining to the anisotropy in the properties of composite materials and related functional structures are discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/pl00021876", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297638", 
        "issn": [
          "0020-1685", 
          "1608-3172"
        ], 
        "name": "Inorganic Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "name": "Electrodynamic equations for heterogeneous media and structures on the length scales of their constituents", 
    "pagination": "s128-s144", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9fca594fec46553be97dca93915bd9f5c295339add74b7cf34d8346d12e39ede"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/pl00021876"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106278810"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/pl00021876", 
      "https://app.dimensions.ai/details/publication/pub.1106278810"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/PL00021876"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/pl00021876'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/pl00021876'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/pl00021876'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/pl00021876'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/pl00021876 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N5fa08f11d1ea4c328fd7971e126f1764
4 schema:citation https://doi.org/10.1006/jcph.1997.5783
5 https://doi.org/10.1016/s0001-8686(98)00054-2
6 https://doi.org/10.1016/s0065-2717(01)80011-3
7 https://doi.org/10.1063/1.858194
8 https://doi.org/10.1063/1.858523
9 https://doi.org/10.1070/pu1971v013n05abeh004213
10 https://doi.org/10.1080/02726349408908376
11 https://doi.org/10.1103/physrevb.38.10101
12 https://doi.org/10.1103/physrevlett.57.2564
13 https://doi.org/10.1103/physrevlett.58.2059
14 https://doi.org/10.1103/physrevlett.58.2486
15 https://doi.org/10.1103/physrevlett.61.1591
16 https://doi.org/10.1103/physrevlett.63.1950
17 https://doi.org/10.1115/1.1413247
18 https://doi.org/10.1115/1.2816810
19 https://doi.org/10.1117/12.240446
20 https://doi.org/10.1117/12.240451
21 https://doi.org/10.1117/12.350133
22 https://doi.org/10.1137/s0036139994263859
23 https://doi.org/10.1137/s0036139996297249
24 https://doi.org/10.1615/jenhheattransf.v3.i2.60
25 https://doi.org/10.1615/jpormedia.v2.i3.50
26 schema:datePublished 2004-01
27 schema:datePublishedReg 2004-01-01
28 schema:description A new theoretical approach is proposed for addressing the electrodynamics of heterogeneous media and structures, which takes into account the interrelation between physical phenomena on different length scales. Using volume averaging theory (VAT), parabolic partial differential equations containing integral or integro-differential terms are obtained for electromagnetic wave propagation in heterogeneous media. This theory allows one to accurately describe physical phenomena owing to its ability to take into account spatial scales, interfacial effects, the structural features of heterogeneous media such as high-Tc superconducting ceramics and absorbing composite materials, and heat and mass exchange in porous media. The approach is exemplified by analysis of functional structures with electrodynamic properties, in particular absorbing structures, and its conclusions are supported by experimental data. Issues pertaining to the anisotropy in the properties of composite materials and related functional structures are discussed.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf Nc6a35f1927af443ca8c9b10b85adc9de
33 Nc860adb3c21d413788b49706cefb9c06
34 sg:journal.1297638
35 schema:name Electrodynamic equations for heterogeneous media and structures on the length scales of their constituents
36 schema:pagination s128-s144
37 schema:productId N5a60b337c08441bbaa736cb79d6004d9
38 Nc7a1668bc0694ec8b65b2e0a2249db26
39 Ne616276a9d564ab1a548bb9c79c95f7a
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106278810
41 https://doi.org/10.1007/pl00021876
42 schema:sdDatePublished 2019-04-10T13:11
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N69ce6fbac2494a32a2834b8622640f8b
45 schema:url http://link.springer.com/10.1007/PL00021876
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N5a60b337c08441bbaa736cb79d6004d9 schema:name doi
50 schema:value 10.1007/pl00021876
51 rdf:type schema:PropertyValue
52 N5fa08f11d1ea4c328fd7971e126f1764 rdf:first sg:person.011154716503.01
53 rdf:rest N7f1c1fc5f62246fba52d4df27332dfd0
54 N69ce6fbac2494a32a2834b8622640f8b schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N7f1c1fc5f62246fba52d4df27332dfd0 rdf:first sg:person.012614476122.66
57 rdf:rest rdf:nil
58 N8877161e9e3a4384b8d6fcaff15aa511 schema:name Hierarchical Technologies, 10431, Larwin Ave., 91311, Chatsworth, California, USA
59 rdf:type schema:Organization
60 Nc6a35f1927af443ca8c9b10b85adc9de schema:volumeNumber 40
61 rdf:type schema:PublicationVolume
62 Nc7a1668bc0694ec8b65b2e0a2249db26 schema:name dimensions_id
63 schema:value pub.1106278810
64 rdf:type schema:PropertyValue
65 Nc860adb3c21d413788b49706cefb9c06 schema:issueNumber 2
66 rdf:type schema:PublicationIssue
67 Ne616276a9d564ab1a548bb9c79c95f7a schema:name readcube_id
68 schema:value 9fca594fec46553be97dca93915bd9f5c295339add74b7cf34d8346d12e39ede
69 rdf:type schema:PropertyValue
70 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
71 schema:name Engineering
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
74 schema:name Materials Engineering
75 rdf:type schema:DefinedTerm
76 sg:journal.1297638 schema:issn 0020-1685
77 1608-3172
78 schema:name Inorganic Materials
79 rdf:type schema:Periodical
80 sg:person.011154716503.01 schema:affiliation N8877161e9e3a4384b8d6fcaff15aa511
81 schema:familyName Travkin
82 schema:givenName V. S.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011154716503.01
84 rdf:type schema:Person
85 sg:person.012614476122.66 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
86 schema:familyName Ponomarenko
87 schema:givenName A. T.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012614476122.66
89 rdf:type schema:Person
90 https://doi.org/10.1006/jcph.1997.5783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043567874
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/s0001-8686(98)00054-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016116010
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/s0065-2717(01)80011-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029612461
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1063/1.858194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058111399
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1063/1.858523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058111728
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1070/pu1971v013n05abeh004213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058169764
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1080/02726349408908376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009840054
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevb.38.10101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060546494
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physrevlett.57.2564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060794150
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1103/physrevlett.58.2059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042120164
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1103/physrevlett.58.2486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795108
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physrevlett.61.1591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797665
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrevlett.63.1950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060799583
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1115/1.1413247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062069572
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1115/1.2816810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062084155
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1117/12.240446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022913369
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1117/12.240451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026767434
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1117/12.350133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036823552
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1137/s0036139994263859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875178
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1137/s0036139996297249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875356
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1615/jenhheattransf.v3.i2.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068145775
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1615/jpormedia.v2.i3.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068148844
133 rdf:type schema:CreativeWork
134 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
135 schema:name Enikopolov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Profsoyuznaya ul. 70, 117393, Moscow, Russia
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...