A Sparse ℋ-Matrix Arithmetic. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-02

AUTHORS

W. Hackbusch, B. N. Khoromskij

ABSTRACT

The preceding Part I of this paper has introduced a class of matrices (ℋ-matrices) which are data-sparse and allow an approximate matrix arithmetic of almost linear complexity. The matrices discussed in Part I are able to approximate discrete integral operators in the case of one spatial dimension. In the present Part II, the construction of ℋ-matrices is explained for FEM and BEM applications in two and three spatial dimensions. The orders of complexity of the various matrix operations are exactly the same as in Part I. In particular, it is shown that the applicability of ℋ-matrices does not require a regular mesh. We discuss quasi-uniform unstructured meshes and the case of composed surfaces as well. More... »

PAGES

21-47

Journal

TITLE

Computing

ISSUE

1

VOLUME

64

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/pl00021408

DOI

http://dx.doi.org/10.1007/pl00021408

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085169737


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Society", 
          "id": "https://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Max-Planck-Institut Mathematik in den Naturwissenschaften Inselstr. 22-26 D-04103 Leipzig Germany email: wh@mis.mpg.de, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hackbusch", 
        "givenName": "W.", 
        "id": "sg:person.016444014103.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016444014103.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Society", 
          "id": "https://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Max-Planck-Institut Mathematik in den Naturwissenschaften Inselstr. 22-26 D-04103 Leipzig Germany email: bokh@mis.mpg.de, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khoromskij", 
        "givenName": "B. N.", 
        "id": "sg:person.015305261663.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015305261663.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01396324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004208576", 
          "https://doi.org/10.1007/bf01396324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00005399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007699012", 
          "https://doi.org/10.1007/pl00005399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02575706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013624951", 
          "https://doi.org/10.1007/bf02575706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02575706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013624951", 
          "https://doi.org/10.1007/bf02575706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02072014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018913200", 
          "https://doi.org/10.1007/bf02072014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02072014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018913200", 
          "https://doi.org/10.1007/bf02072014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-9215-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035105173", 
          "https://doi.org/10.1007/978-3-0348-9215-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-9215-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035105173", 
          "https://doi.org/10.1007/978-3-0348-9215-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02571732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042307526", 
          "https://doi.org/10.1007/bf02571732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02571732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042307526", 
          "https://doi.org/10.1007/bf02571732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-0427(00)00486-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047448511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-008043568-8/50019-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090076041"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-02", 
    "datePublishedReg": "2000-02-01", 
    "description": "The preceding Part I of this paper has introduced a class of matrices (\u210b-matrices) which are data-sparse and allow an approximate matrix arithmetic of almost linear complexity. The matrices discussed in Part I are able to approximate discrete integral operators in the case of one spatial dimension. In the present Part II, the construction of \u210b-matrices is explained for FEM and BEM applications in two and three spatial dimensions. The orders of complexity of the various matrix operations are exactly the same as in Part I. In particular, it is shown that the applicability of \u210b-matrices does not require a regular mesh. We discuss quasi-uniform unstructured meshes and the case of composed surfaces as well.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/pl00021408", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1356894", 
        "issn": [
          "1521-9615", 
          "1436-5057"
        ], 
        "name": "Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "64"
      }
    ], 
    "name": "A Sparse \u210b-Matrix Arithmetic.", 
    "pagination": "21-47", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ea999d5204facf4ca6d62f1a306b2388fe54e0340ed36e22ec2b8ce4bf978fba"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/pl00021408"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085169737"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/pl00021408", 
      "https://app.dimensions.ai/details/publication/pub.1085169737"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000517.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FPL00021408"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/pl00021408'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/pl00021408'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/pl00021408'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/pl00021408'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/pl00021408 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5001bd20e6144b2ba46bc5a362535d73
4 schema:citation sg:pub.10.1007/978-3-0348-9215-5
5 sg:pub.10.1007/bf01396324
6 sg:pub.10.1007/bf02072014
7 sg:pub.10.1007/bf02571732
8 sg:pub.10.1007/bf02575706
9 sg:pub.10.1007/pl00005399
10 https://doi.org/10.1016/b978-008043568-8/50019-5
11 https://doi.org/10.1016/s0377-0427(00)00486-6
12 schema:datePublished 2000-02
13 schema:datePublishedReg 2000-02-01
14 schema:description The preceding Part I of this paper has introduced a class of matrices (ℋ-matrices) which are data-sparse and allow an approximate matrix arithmetic of almost linear complexity. The matrices discussed in Part I are able to approximate discrete integral operators in the case of one spatial dimension. In the present Part II, the construction of ℋ-matrices is explained for FEM and BEM applications in two and three spatial dimensions. The orders of complexity of the various matrix operations are exactly the same as in Part I. In particular, it is shown that the applicability of ℋ-matrices does not require a regular mesh. We discuss quasi-uniform unstructured meshes and the case of composed surfaces as well.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N40834147c3b945d0a92b776d60fc0f45
19 Nf8f3191d68a749f7b478f290359f2c45
20 sg:journal.1356894
21 schema:name A Sparse ℋ-Matrix Arithmetic.
22 schema:pagination 21-47
23 schema:productId N5a48aaf0746d4c6ea948a8be76c09917
24 N80566420e3a047b9b273e8ed667e35a9
25 Ndd978a8cb1ac4a5d8408cb78a1d22d01
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085169737
27 https://doi.org/10.1007/pl00021408
28 schema:sdDatePublished 2019-04-10T13:18
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nde0f73c3512346abab3b3cb425174f9c
31 schema:url http://link.springer.com/10.1007%2FPL00021408
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N40834147c3b945d0a92b776d60fc0f45 schema:volumeNumber 64
36 rdf:type schema:PublicationVolume
37 N5001bd20e6144b2ba46bc5a362535d73 rdf:first sg:person.016444014103.75
38 rdf:rest N5305287a47b64b48b715893276274570
39 N5305287a47b64b48b715893276274570 rdf:first sg:person.015305261663.95
40 rdf:rest rdf:nil
41 N5a48aaf0746d4c6ea948a8be76c09917 schema:name doi
42 schema:value 10.1007/pl00021408
43 rdf:type schema:PropertyValue
44 N80566420e3a047b9b273e8ed667e35a9 schema:name readcube_id
45 schema:value ea999d5204facf4ca6d62f1a306b2388fe54e0340ed36e22ec2b8ce4bf978fba
46 rdf:type schema:PropertyValue
47 Ndd978a8cb1ac4a5d8408cb78a1d22d01 schema:name dimensions_id
48 schema:value pub.1085169737
49 rdf:type schema:PropertyValue
50 Nde0f73c3512346abab3b3cb425174f9c schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Nf8f3191d68a749f7b478f290359f2c45 schema:issueNumber 1
53 rdf:type schema:PublicationIssue
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
58 schema:name Pure Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1356894 schema:issn 1436-5057
61 1521-9615
62 schema:name Computing
63 rdf:type schema:Periodical
64 sg:person.015305261663.95 schema:affiliation https://www.grid.ac/institutes/grid.4372.2
65 schema:familyName Khoromskij
66 schema:givenName B. N.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015305261663.95
68 rdf:type schema:Person
69 sg:person.016444014103.75 schema:affiliation https://www.grid.ac/institutes/grid.4372.2
70 schema:familyName Hackbusch
71 schema:givenName W.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016444014103.75
73 rdf:type schema:Person
74 sg:pub.10.1007/978-3-0348-9215-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035105173
75 https://doi.org/10.1007/978-3-0348-9215-5
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf01396324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004208576
78 https://doi.org/10.1007/bf01396324
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bf02072014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018913200
81 https://doi.org/10.1007/bf02072014
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf02571732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042307526
84 https://doi.org/10.1007/bf02571732
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf02575706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013624951
87 https://doi.org/10.1007/bf02575706
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/pl00005399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007699012
90 https://doi.org/10.1007/pl00005399
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/b978-008043568-8/50019-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090076041
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/s0377-0427(00)00486-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047448511
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.4372.2 schema:alternateName Max Planck Society
97 schema:name Max-Planck-Institut Mathematik in den Naturwissenschaften Inselstr. 22-26 D-04103 Leipzig Germany email: bokh@mis.mpg.de, DE
98 Max-Planck-Institut Mathematik in den Naturwissenschaften Inselstr. 22-26 D-04103 Leipzig Germany email: wh@mis.mpg.de, DE
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...