A Sparse ℋ-Matrix Arithmetic. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-02

AUTHORS

W. Hackbusch, B. N. Khoromskij

ABSTRACT

The preceding Part I of this paper has introduced a class of matrices (ℋ-matrices) which are data-sparse and allow an approximate matrix arithmetic of almost linear complexity. The matrices discussed in Part I are able to approximate discrete integral operators in the case of one spatial dimension. In the present Part II, the construction of ℋ-matrices is explained for FEM and BEM applications in two and three spatial dimensions. The orders of complexity of the various matrix operations are exactly the same as in Part I. In particular, it is shown that the applicability of ℋ-matrices does not require a regular mesh. We discuss quasi-uniform unstructured meshes and the case of composed surfaces as well. More... »

PAGES

21-47

Journal

TITLE

Computing

ISSUE

1

VOLUME

64

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/pl00021408

DOI

http://dx.doi.org/10.1007/pl00021408

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085169737


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Society", 
          "id": "https://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Max-Planck-Institut Mathematik in den Naturwissenschaften Inselstr. 22-26 D-04103 Leipzig Germany email: wh@mis.mpg.de, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hackbusch", 
        "givenName": "W.", 
        "id": "sg:person.016444014103.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016444014103.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Society", 
          "id": "https://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Max-Planck-Institut Mathematik in den Naturwissenschaften Inselstr. 22-26 D-04103 Leipzig Germany email: bokh@mis.mpg.de, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khoromskij", 
        "givenName": "B. N.", 
        "id": "sg:person.015305261663.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015305261663.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01396324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004208576", 
          "https://doi.org/10.1007/bf01396324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00005399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007699012", 
          "https://doi.org/10.1007/pl00005399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02575706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013624951", 
          "https://doi.org/10.1007/bf02575706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02575706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013624951", 
          "https://doi.org/10.1007/bf02575706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02072014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018913200", 
          "https://doi.org/10.1007/bf02072014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02072014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018913200", 
          "https://doi.org/10.1007/bf02072014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-9215-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035105173", 
          "https://doi.org/10.1007/978-3-0348-9215-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-9215-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035105173", 
          "https://doi.org/10.1007/978-3-0348-9215-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02571732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042307526", 
          "https://doi.org/10.1007/bf02571732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02571732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042307526", 
          "https://doi.org/10.1007/bf02571732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-0427(00)00486-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047448511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-008043568-8/50019-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090076041"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-02", 
    "datePublishedReg": "2000-02-01", 
    "description": "The preceding Part I of this paper has introduced a class of matrices (\u210b-matrices) which are data-sparse and allow an approximate matrix arithmetic of almost linear complexity. The matrices discussed in Part I are able to approximate discrete integral operators in the case of one spatial dimension. In the present Part II, the construction of \u210b-matrices is explained for FEM and BEM applications in two and three spatial dimensions. The orders of complexity of the various matrix operations are exactly the same as in Part I. In particular, it is shown that the applicability of \u210b-matrices does not require a regular mesh. We discuss quasi-uniform unstructured meshes and the case of composed surfaces as well.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/pl00021408", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1356894", 
        "issn": [
          "1521-9615", 
          "1436-5057"
        ], 
        "name": "Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "64"
      }
    ], 
    "name": "A Sparse \u210b-Matrix Arithmetic.", 
    "pagination": "21-47", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ea999d5204facf4ca6d62f1a306b2388fe54e0340ed36e22ec2b8ce4bf978fba"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/pl00021408"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085169737"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/pl00021408", 
      "https://app.dimensions.ai/details/publication/pub.1085169737"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000517.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FPL00021408"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/pl00021408'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/pl00021408'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/pl00021408'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/pl00021408'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/pl00021408 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf17defcd6d2d40659f8eb41ca6563e31
4 schema:citation sg:pub.10.1007/978-3-0348-9215-5
5 sg:pub.10.1007/bf01396324
6 sg:pub.10.1007/bf02072014
7 sg:pub.10.1007/bf02571732
8 sg:pub.10.1007/bf02575706
9 sg:pub.10.1007/pl00005399
10 https://doi.org/10.1016/b978-008043568-8/50019-5
11 https://doi.org/10.1016/s0377-0427(00)00486-6
12 schema:datePublished 2000-02
13 schema:datePublishedReg 2000-02-01
14 schema:description The preceding Part I of this paper has introduced a class of matrices (ℋ-matrices) which are data-sparse and allow an approximate matrix arithmetic of almost linear complexity. The matrices discussed in Part I are able to approximate discrete integral operators in the case of one spatial dimension. In the present Part II, the construction of ℋ-matrices is explained for FEM and BEM applications in two and three spatial dimensions. The orders of complexity of the various matrix operations are exactly the same as in Part I. In particular, it is shown that the applicability of ℋ-matrices does not require a regular mesh. We discuss quasi-uniform unstructured meshes and the case of composed surfaces as well.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N3bb6ab863d9944a691146acd3c056892
19 Nfbc1044e13fa44c5a8ef69ea3540715b
20 sg:journal.1356894
21 schema:name A Sparse ℋ-Matrix Arithmetic.
22 schema:pagination 21-47
23 schema:productId Ncd25cd7dac874cecb2ed755cb7b412df
24 Nd2a8ce07ac8948a2a0b7f714bf2bd520
25 Nf88bcf43a90c4341831b8b7e3f867467
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085169737
27 https://doi.org/10.1007/pl00021408
28 schema:sdDatePublished 2019-04-10T13:18
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nac2750f92a274fd9ad5e8ba0102bdeb4
31 schema:url http://link.springer.com/10.1007%2FPL00021408
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N3bb6ab863d9944a691146acd3c056892 schema:issueNumber 1
36 rdf:type schema:PublicationIssue
37 Nac2750f92a274fd9ad5e8ba0102bdeb4 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 Ncd25cd7dac874cecb2ed755cb7b412df schema:name doi
40 schema:value 10.1007/pl00021408
41 rdf:type schema:PropertyValue
42 Nd2a8ce07ac8948a2a0b7f714bf2bd520 schema:name dimensions_id
43 schema:value pub.1085169737
44 rdf:type schema:PropertyValue
45 Nf17defcd6d2d40659f8eb41ca6563e31 rdf:first sg:person.016444014103.75
46 rdf:rest Nff348e594ce4417589be86f2a51e6dfc
47 Nf88bcf43a90c4341831b8b7e3f867467 schema:name readcube_id
48 schema:value ea999d5204facf4ca6d62f1a306b2388fe54e0340ed36e22ec2b8ce4bf978fba
49 rdf:type schema:PropertyValue
50 Nfbc1044e13fa44c5a8ef69ea3540715b schema:volumeNumber 64
51 rdf:type schema:PublicationVolume
52 Nff348e594ce4417589be86f2a51e6dfc rdf:first sg:person.015305261663.95
53 rdf:rest rdf:nil
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
58 schema:name Pure Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1356894 schema:issn 1436-5057
61 1521-9615
62 schema:name Computing
63 rdf:type schema:Periodical
64 sg:person.015305261663.95 schema:affiliation https://www.grid.ac/institutes/grid.4372.2
65 schema:familyName Khoromskij
66 schema:givenName B. N.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015305261663.95
68 rdf:type schema:Person
69 sg:person.016444014103.75 schema:affiliation https://www.grid.ac/institutes/grid.4372.2
70 schema:familyName Hackbusch
71 schema:givenName W.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016444014103.75
73 rdf:type schema:Person
74 sg:pub.10.1007/978-3-0348-9215-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035105173
75 https://doi.org/10.1007/978-3-0348-9215-5
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf01396324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004208576
78 https://doi.org/10.1007/bf01396324
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bf02072014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018913200
81 https://doi.org/10.1007/bf02072014
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf02571732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042307526
84 https://doi.org/10.1007/bf02571732
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf02575706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013624951
87 https://doi.org/10.1007/bf02575706
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/pl00005399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007699012
90 https://doi.org/10.1007/pl00005399
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/b978-008043568-8/50019-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090076041
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/s0377-0427(00)00486-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047448511
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.4372.2 schema:alternateName Max Planck Society
97 schema:name Max-Planck-Institut Mathematik in den Naturwissenschaften Inselstr. 22-26 D-04103 Leipzig Germany email: bokh@mis.mpg.de, DE
98 Max-Planck-Institut Mathematik in den Naturwissenschaften Inselstr. 22-26 D-04103 Leipzig Germany email: wh@mis.mpg.de, DE
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...