A trust region method based on interior point techniques for nonlinear programming View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-11

AUTHORS

Richard H. Byrd, Jean Charles Gilbert, Jorge Nocedal

ABSTRACT

An algorithm for minimizing a nonlinear function subject to nonlinear inequality constraints is described. It applies sequential quadratic programming techniques to a sequence of barrier problems, and uses trust regions to ensure the robustness of the iteration and to allow the direct use of second order derivatives. This framework permits primal and primal-dual steps, but the paper focuses on the primal version of the new algorithm. An analysis of the convergence properties of this method is presented. More... »

PAGES

149-185

References to SciGraph publications

  • 1998-10. Feasible Direction Interior-Point Technique for Nonlinear Optimization in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/pl00011391

    DOI

    http://dx.doi.org/10.1007/pl00011391

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033200744


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Computer Science Department, University of Colorado, Boulder CO 80309, USA, US"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Byrd", 
            "givenName": "Richard H.", 
            "id": "sg:person.01213635733.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213635733.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French Institute for Research in Computer Science and Automation", 
              "id": "https://www.grid.ac/institutes/grid.5328.c", 
              "name": [
                "INRIA Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France, FR"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gilbert", 
            "givenName": "Jean Charles", 
            "id": "sg:person.015344524531.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015344524531.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northwestern University", 
              "id": "https://www.grid.ac/institutes/grid.16753.36", 
              "name": [
                "ECE Department, Northwestern University, Evanston Il 60208, USA, US"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nocedal", 
            "givenName": "Jorge", 
            "id": "sg:person.01157306714.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157306714.71"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1021752227797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045811233", 
              "https://doi.org/10.1023/a:1021752227797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/59.317548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061192991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0720042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062852930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0722035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062853095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0805008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062854291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s1052623493262993", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062883424"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-11", 
        "datePublishedReg": "2000-11-01", 
        "description": "An algorithm for minimizing a nonlinear function subject to nonlinear inequality constraints is described. It applies sequential quadratic programming techniques to a sequence of barrier problems, and uses trust regions to ensure the robustness of the iteration and to allow the direct use of second order derivatives. This framework permits primal and primal-dual steps, but the paper focuses on the primal version of the new algorithm. An analysis of the convergence properties of this method is presented.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/pl00011391", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1047630", 
            "issn": [
              "0025-5610", 
              "1436-4646"
            ], 
            "name": "Mathematical Programming", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "89"
          }
        ], 
        "name": "A trust region method based on interior point techniques for nonlinear programming", 
        "pagination": "149-185", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9e29b6efe73b1b4bf8b80dd0f6eaadfe4f131211f0a74de1cc57a65f07850f16"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/pl00011391"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033200744"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/pl00011391", 
          "https://app.dimensions.ai/details/publication/pub.1033200744"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000533.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FPL00011391"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/pl00011391'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/pl00011391'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/pl00011391'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/pl00011391'


     

    This table displays all metadata directly associated to this object as RDF triples.

    99 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/pl00011391 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N1ac968bdac1d43738f7480f7fea2c113
    4 schema:citation sg:pub.10.1023/a:1021752227797
    5 https://doi.org/10.1109/59.317548
    6 https://doi.org/10.1137/0720042
    7 https://doi.org/10.1137/0722035
    8 https://doi.org/10.1137/0805008
    9 https://doi.org/10.1137/s1052623493262993
    10 schema:datePublished 2000-11
    11 schema:datePublishedReg 2000-11-01
    12 schema:description An algorithm for minimizing a nonlinear function subject to nonlinear inequality constraints is described. It applies sequential quadratic programming techniques to a sequence of barrier problems, and uses trust regions to ensure the robustness of the iteration and to allow the direct use of second order derivatives. This framework permits primal and primal-dual steps, but the paper focuses on the primal version of the new algorithm. An analysis of the convergence properties of this method is presented.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree true
    16 schema:isPartOf N03ea80655c114bf7930f688ce3c82227
    17 N5e7f05299ad24d9ea5a18d427bd3a040
    18 sg:journal.1047630
    19 schema:name A trust region method based on interior point techniques for nonlinear programming
    20 schema:pagination 149-185
    21 schema:productId N6be609b5111f4d8ab8c23a027c48dad7
    22 N71516f6de57d42b0a6ca51780d0db606
    23 N8379b30f8b1b4a919322c03e756939a1
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033200744
    25 https://doi.org/10.1007/pl00011391
    26 schema:sdDatePublished 2019-04-10T17:35
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher Naab65516810041078bfb650d516264d4
    29 schema:url http://link.springer.com/10.1007%2FPL00011391
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N03ea80655c114bf7930f688ce3c82227 schema:issueNumber 1
    34 rdf:type schema:PublicationIssue
    35 N0dc4d21249784d18ac0f9a7580ee6a46 schema:name Computer Science Department, University of Colorado, Boulder CO 80309, USA, US
    36 rdf:type schema:Organization
    37 N1ac968bdac1d43738f7480f7fea2c113 rdf:first sg:person.01213635733.38
    38 rdf:rest N3b605ab83c334d45a5fa2c4af1898329
    39 N3b605ab83c334d45a5fa2c4af1898329 rdf:first sg:person.015344524531.27
    40 rdf:rest N7c0680e011094d8faffea6a3cf933fba
    41 N5e7f05299ad24d9ea5a18d427bd3a040 schema:volumeNumber 89
    42 rdf:type schema:PublicationVolume
    43 N6be609b5111f4d8ab8c23a027c48dad7 schema:name doi
    44 schema:value 10.1007/pl00011391
    45 rdf:type schema:PropertyValue
    46 N71516f6de57d42b0a6ca51780d0db606 schema:name readcube_id
    47 schema:value 9e29b6efe73b1b4bf8b80dd0f6eaadfe4f131211f0a74de1cc57a65f07850f16
    48 rdf:type schema:PropertyValue
    49 N7c0680e011094d8faffea6a3cf933fba rdf:first sg:person.01157306714.71
    50 rdf:rest rdf:nil
    51 N8379b30f8b1b4a919322c03e756939a1 schema:name dimensions_id
    52 schema:value pub.1033200744
    53 rdf:type schema:PropertyValue
    54 Naab65516810041078bfb650d516264d4 schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Mathematical Sciences
    58 rdf:type schema:DefinedTerm
    59 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Applied Mathematics
    61 rdf:type schema:DefinedTerm
    62 sg:journal.1047630 schema:issn 0025-5610
    63 1436-4646
    64 schema:name Mathematical Programming
    65 rdf:type schema:Periodical
    66 sg:person.01157306714.71 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
    67 schema:familyName Nocedal
    68 schema:givenName Jorge
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157306714.71
    70 rdf:type schema:Person
    71 sg:person.01213635733.38 schema:affiliation N0dc4d21249784d18ac0f9a7580ee6a46
    72 schema:familyName Byrd
    73 schema:givenName Richard H.
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213635733.38
    75 rdf:type schema:Person
    76 sg:person.015344524531.27 schema:affiliation https://www.grid.ac/institutes/grid.5328.c
    77 schema:familyName Gilbert
    78 schema:givenName Jean Charles
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015344524531.27
    80 rdf:type schema:Person
    81 sg:pub.10.1023/a:1021752227797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045811233
    82 https://doi.org/10.1023/a:1021752227797
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1109/59.317548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061192991
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1137/0720042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852930
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1137/0722035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062853095
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1137/0805008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062854291
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1137/s1052623493262993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883424
    93 rdf:type schema:CreativeWork
    94 https://www.grid.ac/institutes/grid.16753.36 schema:alternateName Northwestern University
    95 schema:name ECE Department, Northwestern University, Evanston Il 60208, USA, US
    96 rdf:type schema:Organization
    97 https://www.grid.ac/institutes/grid.5328.c schema:alternateName French Institute for Research in Computer Science and Automation
    98 schema:name INRIA Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France, FR
    99 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...